

Contents

- 01. Linear motion g
- 02. Selection of line
- 03. Life calculation
- 04. Rigidity & prelo
- 05. Friction
- 06. Precision
- 07. Lubrication
- 08. Surface treatme
- 09. Dust proof
- 10. Measure to use
- 11. Placement and
- 12. Types of linear
- 13. Options
- 14. Instructions for

guide	06
ear motion guide	10
1	14
bad	28
	34
	38
	48
ent	52
	56
in special environment	60
installation	64
motion guide	84
	136
handling	146

Guide

1. Characteristics 2. Strengths 3. Types

01

1. Characteristics

RBX Linear Motion Guide is a straight-line motion bearing with the structure in which rolling elements such as balls or rollers softly circulate the inner part of the block and the block can make an infinite straight-line motion along the raceway surface of a rail.

2. Strengths

1) Able to make a precise positioning

Since there is less difference between static friction and kinetic friction as well as in speed-induced friction fluctuation, it excellently responds even to micro-migration, alowing precise positioning.

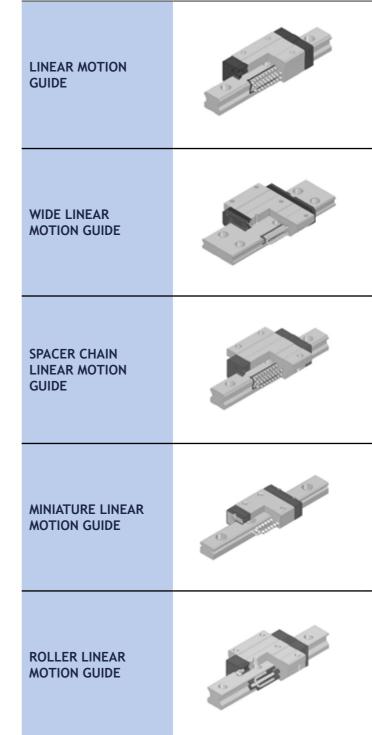
2) Able to maintain accuracy stably for a long time

Less friction coefficient and wear due to ideal rolling motion allows the stable maintenance of accuracy for a long time.

3) Able to eliminate clearance or increase rigidity by preloading

It is possible to eliminate clearance by using rolling elements such as a ball or a roller or increase rigidity of Linear Motion Guide by preloading.

4) Lubrication is simple.


Lubrication is simple but it uses grease or oil which makes it convenient to maintain.

5) Able to compact equipment and save cost for operating electricity

It can be made into compact miniaturized equipment because friction is low despite highly-rigid high-loading, which saves manufacturing costs and energy.

3. Types

RBX offers various types of Linear Motion guide from miniature types to general ball Linear Motion guide to low-sound linear motion guide to ultra high-rigid roller linear motion guide. Since each supports different shapes and sizes according to service conditions, you can select the optimal linear motion guide to each usage.

- World standard ball Linear Motion guide
- 4-direction equal load type with 40° contact angle
- Great error-absorbing ability with D/F combination
- High-rigid highly accurate straight-line motion through ideal rolling motion

• It is a compact highly-rigid 4-direction equal load type with 45 degrees, and suitable for use in a oneaxis type since it is wider and lower heights than the general miniature linear motion guide and rigidity increased.

- World standard ball Linear Motion guide
- 4-direction equal load type with 45° contact angle
- Great error-absorbing ability with D/F combination
- Spacer-enabled retainer type with low noise low dust raise straight-line motion device
- Miniature high-rigidity
- Various shapes and sizes
- Highly-durable and reliable compact straight-line motion device
- Roller-enabled ultra-rigid linear motion guide
- 4-direction equal load type with 40° contact angle
- Able to run reliably for a long time through rolling motion having wide contact surface
- High-load, high-rigid, highly accurate straight-line motion

Selection of Linear Motion Guide

Overview
 Procedure

02

1. Overview

To select Linear Motion guide, most of all identify detailed requirements and prioritize the requirements to select the Linear Motion Guide suitable for the service conditions.

2. Procedure

IDENTIFY SERVICE CONDITIONS	Equipment, maintenance structure, installation space, assembly status, functional requirements, service conditions
SELECT THE TYPE OF LINEAR MOTION GUIDE	Select the appropriate type by considering motion condition, load level, rigidity, friction, and assembly
SELECT THE MODEL NUMBER OF LINEAR MOTION GUIDE	Determine the model number and the quantity of blocks by considering the space and load
CALCULATE LOAD	Calculate the load in vertical and horizontal directions and moment
CALCULATE EQUIVALENT LOAD	Calculate each load applied to the block by converting it into equivalent load
CALCULATE MEAN LOAD	Calculate each load applied to the block and variable load during deceleration by converting them into mean load
CALCULATE STATIC SAFETY FACTOR	Calculate the static safety factor identified by basic load rating and max. equivalent load and check if it fits for service condition
CALCULATE LIFE	Check if it fits for service conditions by calculating load rating and life
REVIEW PRELOAD & CLEARANCE	Select the preload and clearance suitable for service conditions
DETERMINE THE CLASS OF PRECISION	Determine the class of precision required by Linear Motion guide while driving
LUBRICATION, DUST PROOF, SURFACE HANDLING	Select lubricant suitable for the environment using grease, oil, and special grease lubrication and select seal for dust proof / determine the method of surface handing for rust prevention and low dust raise
COMPLETE SELECTION	Complete the decision of final specifications of Linear Motion

Life Calculation

1. Load rating and life

03

- 2. Load Calculation
 - 3. Service Condition Setting
 - 4. Load Calculation Formula

5. Equivalent Load Calculation 6. Equivalent Load Calculation Formula 7. Static Safety Factor Calculation 8. Mean Load Calculation 9. Rating Life Calculation

1. Load rating and life

(1) Life

If external load is applied to Linear Motion guide while driving, fatigue fracture occurs by stress created as load is repeatedly applied to the raceway surface and rolling elements, and flaking -peeling off in scale- like flake arises. A total driving distance until flaking occurs due to initial fatigue fracture is the life of a linear motion guide.

Defects may occur in Linear Motion guide earlier than when flaking normally occurs due to wear or fatigue in the following cases:

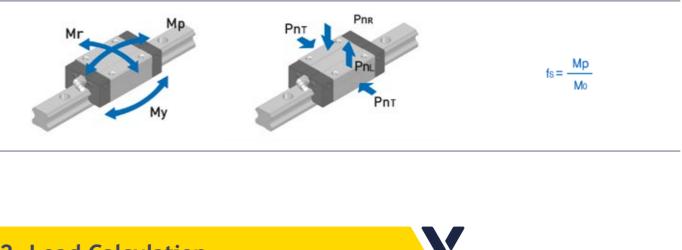
- a. Excess load by the imprecise assembly following a difference in temperature or tolerance
- b. If Linear Motion guide is contaminated with foreign substance
- c. Driving with insufficient lubrication
- d. Reciprocating motion in a very short distance in the form of vibration or wave during the halt or drive
- e. Excessive load to Linear Motion guide
- f. Deformation of plastic end-plate

(2) Rating fatigue life L

Generally Linear Motion guide does not always have same life even though the products are manufactured in the same way because of the difference in scattering of raw material's original fatigue. For this reason, the reference value of life is defined as the rating fatigue life which is a total driving distance that flaking does not occur in 90% of Linear Motion guides in a group when having them run under the same conditions by grouping multiple Linear Motion guides with same specifications into a group.

(3) Basic dynamic load rating C

Basic dynamic load rating is Linear Motion guide's bearing of load which represents an applicable constant load in direction and magnitude when the rated life is 50KM. The reference value of RBX Linear Motion Guide's basic dynamic load rating is 50KM (ball type) and 100KM (roller type). It is used for calculating Linear Motion guide's life while driving under constant load in magnitude from the center of a block to bottom. Each value of basic dynamic load rating (C) is stated in the catalogue.


(4) Basic static load rating Co

If Linear Motion guide is applied by excessive load or attached instantly by big impact load, a partially permanent deformation occurs between a rolling element and the raceway surface. If deformation reaches to a certain extent, it hinders a smooth driving. Basic static load rating is defined as the constant static load in direction and magnitude with the permanent deformation that occurs between a rolling element like a ball or a roller and the raceway surface of block and rail 0.0001 times bigger than the diameter of the rolling element. In Linear Motion guide, it is the load applied from top to bottom based on the center of the block. Each value of basic static load rating (Co) is stated in the specification table.

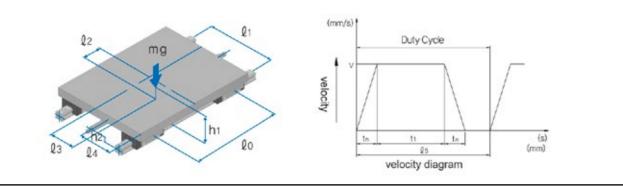
(5) Static allowable moment Mo

Moment load can be applied to Linear Motion guide. Here, a ball or a roller both at the ends is most stressed due to the stress distribution of a ball or a roller which is the rolling element inside Linear Motion guide. Static allowable moment refers to the constant moment load in direction and magnitude when the permanent deformation between a ball or a roller applied with the biggest stress and the raceway surface of a block or a rail is less than 0.0001 of the diameter of the rolling element. Moment values of three directions (Mp, My, Mr) are stated in the specification sheet. Static allowable moment (M0) and static moment load rating (Mp) can be reviewed by applying safety factor (fs).

DIRECTIONS OF LOAD AND MOMENT

2. Load Calculation

Linear Motion guide bears basic dynamic load rating (C) and basic static load rating (Co). But compression load applied from top to down due to inertia force created by the center of gravity, positioning thrust, acceleration, cutting force, and deceleration as well as various loads including tensile load, horizontal load, and moment load can be applied to Linear Motion guide depending on the service conditions. In this case, load of Linear Motion guide changes. When selecting Linear Motion guide, it is required to review these conditions and calculate proper load.

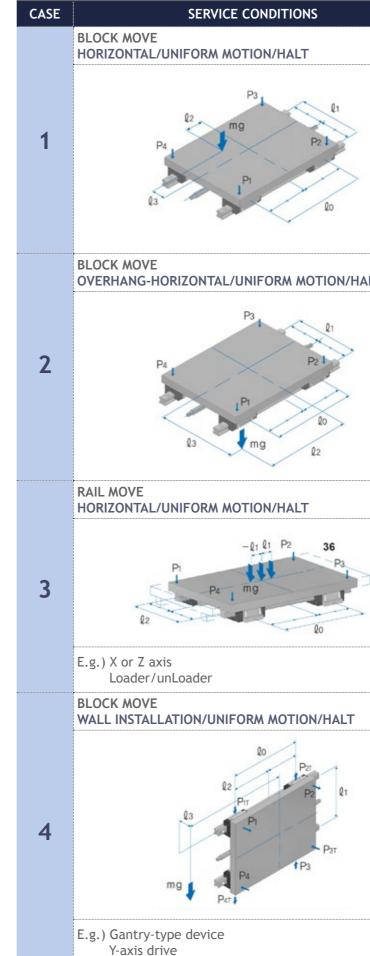


3. Service Condition Setting

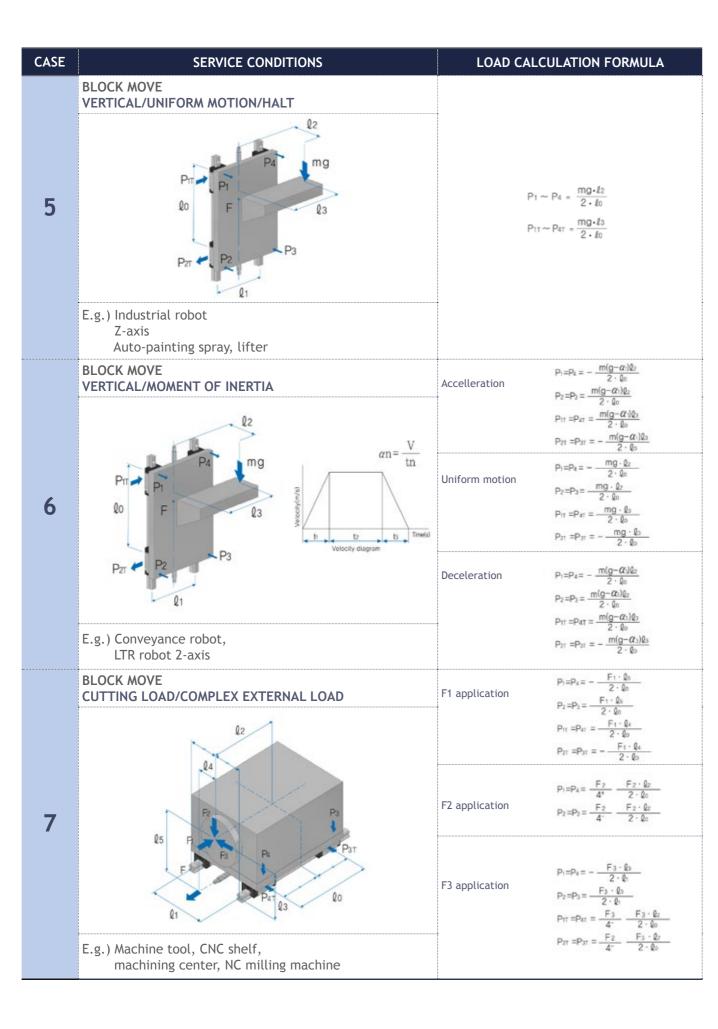
Service conditions necessary for calculating the load and life of Linear Motion guide:

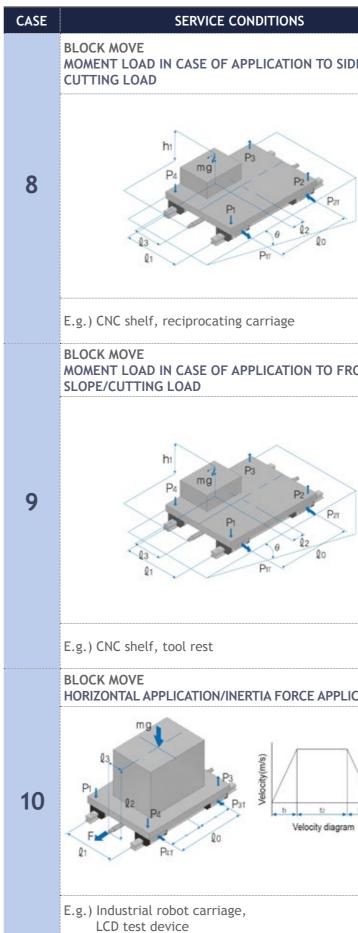
1 •	Mass:	m(kg)	6	 Velocity diagram 	Velocity:	V(mm/s)
2 •	 Applicable load direction 				Time constant:	tn(s)
3 •	Point of application: ℓ_2	, l3, h1(mm)			Acceleration:	an(mm/s)
	(center of gravity)		7	No. of reciprocating	g motion/second:	N1(min ⁻¹)
4 •	• Point of thrust:	ℓ4, h2(mm)	8	• Stroke:		Ls(mm)
5 •	Composition of Linear Motion guide:	ℓ0, ℓ1(mm)	9	 Avg. velocity: 		Vm(m/s)
	(No. of block & rail)		10	Required life:		Lh(h)

FIGURE 1. SERVICE CONDITION


4. Load Calculation Formula

Load applied to Linear Motion guide changes due to external forces such as the center of gravity, position of thrust, acceleration, and cutting resistance. To select Linear Motion guide, you should calculate load applied to the block by fully considering the conditions below.


m: Mass	
ℓn: Distance	
Fn: Thrust	
Pn: Load (vertical, reverse-vertical)	
PnT: Load (horizontal)	


(kg)	g: Acceleration of gravity(g: 9.8 m/s ²)	(m/s²)
(mm)	V: Velocity	(m/s)
(N)	tn: Time constant	(S)
(N)	an: Acceleration	(m/s²)
(N)		

LOAD CALCULATION FORMULA

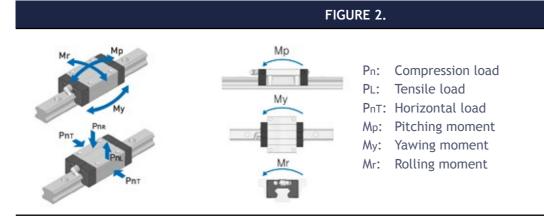
	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$
	4 Z·W Z·W
ALT	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$
	$P_{1} = \frac{mg \cdot \cos \theta}{4} + \frac{mg \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin \theta \cdot h_{1}}{2 \cdot \ell_{1}}$
	$P_{1T} = \frac{mg \cdot sin\theta}{4} + \frac{mg \cdot sin\theta \cdot l_2}{2 \cdot l_1}$ $P_{2} = \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot l_2}{2 \cdot l_0}$ $- \frac{mg \cdot cos\theta \cdot l_2}{2 \cdot l_1} + \frac{mg \cdot sin\theta \cdot h_1}{2 \cdot l_1}$ $P_{2T} = \frac{mg \cdot sin\theta}{4} - \frac{mg \cdot sin\theta \cdot l_2}{2 \cdot l_0}$
	$P_{1} \sim P_{4} = \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{1T} = P_{4T} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2T} = P_{3T} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$

Life Calculation

	LOAD CALCULATION FORMULA	
DE SLOPE/	$P_{1} = \frac{\text{mg} \cdot \cos\theta}{4} + \frac{\text{mg} \cdot \cos\theta \cdot \hat{v}_{2}}{2 \cdot \hat{v}_{0}} - \frac{\text{mg} \cdot \cos\theta \cdot \hat{v}_{3}}{2 \cdot \hat{v}_{1}} + \frac{\text{mg} \cdot \sin\theta \cdot h_{1}}{2 \cdot \hat{v}_{1}}$	
	$P_{1T} = \frac{mg \cdot sin\theta}{4} + \frac{mg \cdot sin\theta \cdot dz}{2 \cdot q_0}$ $P_2 = \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot q_2}{2 \cdot q_0}$ $-\frac{mg \cdot cos\theta \cdot dz}{2 \cdot q_0} + \frac{mg \cdot sin\theta \cdot h_1}{2 \cdot q_1}$ $P_{2T} = \frac{mg \cdot sin\theta}{4} - \frac{mg \cdot sin\theta \cdot dz}{2 \cdot q_0}$ $P_3 = \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot dz}{2 \cdot q_0}$ $P_3 = \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot dz}{2 \cdot q_0}$ $P_{3T} = \frac{mg \cdot sin\theta}{4} + \frac{mg \cdot sin\theta \cdot dz}{2 \cdot q_0}$ $P_{4T} = \frac{mg \cdot cos\theta}{4} + \frac{mg \cdot cos\theta \cdot q_2}{2 \cdot q_0}$ $P_{4T} = \frac{mg \cdot sin\theta}{4} + \frac{mg \cdot sin\theta \cdot dz}{2 \cdot q_0}$	
ONT	$P_{1} = -\frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{0}}$	
	$P_{TT} = \frac{mg \cdot \sin\theta \cdot \theta_3}{2 \cdot \theta_0}$ $P_{TT} = \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \theta_2}{2 \cdot \theta_0}$ $P_2 = \frac{mg \cdot \cos\theta \cdot \theta_3}{2 \cdot \theta_0} - \frac{mg \cdot \sin\theta \cdot h_1}{2 \cdot \theta_0}$ $P_{2T} = -\frac{mg \cdot \sin\theta \cdot \theta_3}{2 \cdot \theta_0}$ $P_{3T} = \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \theta_2}{2 \cdot \theta_0}$ $P_{3T} = -\frac{mg \cdot \sin\theta \cdot \theta_3}{2 \cdot \theta_0}$ $P_{4T} = \frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \theta_2}{2 \cdot \theta_0}$ $P_{4T} = \frac{mg \cdot \sin\theta \cdot \theta_3}{2 \cdot \theta_0}$	
CATION	Accelleration $P_{1=}P_{4=} \frac{mg}{4} - \frac{m}{2 \cdot \ell_{0}}$ $P_{2=}P_{3=} \frac{mg}{4} + \frac{m \cdot \alpha \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{1T} \sim P_{4T} = \frac{m \cdot \alpha \cdot \ell_{3}}{2 \cdot \ell_{0}}$	
$\alpha n = \frac{V}{tn}$	Constant velocity $P_{1} \sim P_{4} = \frac{mg}{4}$	
	Deceleration $P_{1}=P_{4} = \frac{mg}{4} + \frac{m \cdot \alpha_{3} \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2}=P_{3} = \frac{mg}{4} - \frac{m \cdot \alpha_{3} \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{1} = \frac{m \cdot \alpha_{3} \cdot \ell_{3}}{2 \cdot \ell_{0}}$	

5. Equivalent Load Calculation

There are diverse kinds of load applied to Linear Motion guide, such as compression load in vertical direction, tensile load, horizontal load, moment load, etc. There is also combined load of them and sometimes the magnitude and direction of load change. Since it is hard to calculate the variable load when calculating the life of Linear Motion guide, it is required to use equivalent load which is converted to compression load or tensile load in vertical direction in order to produce life or static safety factor.



6. Equivalent Load Calculation Formula

If Linear Motion guide bears vertical compression load or tensile load or horizontal load simultaneously, or the magnitude or direction of load changes, equivalent load is calculated using the following formula.

PE(equivalent load) = Pn + PnT

Pn: Compression load PnT: Horizontal load

7. Static Safety Factor Calculation

Unexpected big load may be applied to Linear Motion guide due to inertia force caused by vibration impact or quick braking and moment load of mechanical structure. When selecting Linear Motion guide, static safety factor must be taken into account to be ready for such load. Static safety factor (fs) is shown in value obtained by dividing basic static load rating by the calculated load. To see the baseline of static safety factor by service condition, please refer to Table 1-1. and Table 1-2.

Table 1-1. Baseline of static safety factor (fs)

TYPE OF ROLLING ELEMENT	SERVICE CONDITION	STATIC SAFETY FACTOR (fs)	
	There is no vibration and impact.	1.0 ~ 1.5	
BALL	Great travel performance is needed.	1.5 ~ 2.0	
	There are moment load, violation, and impact.	2.5 ~ 7.0	
	There is no vibration and impact.	2.0 ~ 3.0	
ROLLER	Great travel performance is needed.	3.0 ~ 5.0	
	There are moment load, violation, and impact.	4.0 ~ 7.0	

Table 1-2.

IF COMPRESSION LOAD IS BIG	
IF TENSILE LOAD IS BIG	
IF HORIZONTAL LOAD IS BIG	

fs:Static safety factorPL:Calculated load (reC0:Basic static load rating (vertical)(N)PnT:Calculated load (heC0L:Basic static load rating (reverse-vertical)(N)fH:Hardness factorC0T:Basic static load rating (horizontal)(N)fT:Temperature factorPn:Calculated load (vertical)(N)fc:Contact factor

PL:	Calculated load (reverse-vertical)	(N)
PnT:	Calculated load (horizontal)	(N)

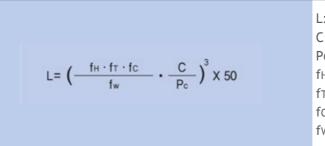
8. Mean Load Calculation

Load applied to the block of Linear Motion guide is not constant, but differs according to service conditions. Here the load that becomes equal to life under variable load is used. This is called mean load. If the load applied to block is changed due to external condition, it is required to calculate life as mean load that includes various conditions as below. If load applied to block varies with different conditions, life should be calculated by including this variable load condition. Mean load (Pm) refers to constant load that becomes equal to life under this variable load when the load applied to block changes with various conditions while traveling.

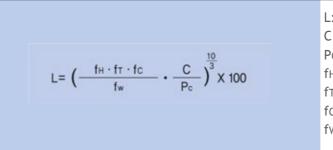
$P_{m} = \sqrt{\frac{1}{L} \cdot \sum_{n=1}^{n} (P_{n}^{i} \cdot L_{n})}$	Pm: Mean load Pn: Variable load L: Total travel distance Ln: Travel distance by loading Pn i: Ball - 3, Roller - 10/3	(N) (N) (mm) (mm)
---	---	----------------------------

Note) the formula above or formula (1) below is applied to a ball.

1. CHANGE IN PHASE			2. CHANGE MONOTONOUSLY	
	$P_m = \sqrt[3]{\frac{1}{L}(P_1^{-3} \cdot L_1 + P_2^{-3} \cdot L_2 - \dots + P_n^{-3} \cdot L_n)} - \dots (1)$		$P_m \doteq \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \cdots (2)$	
Pn: L:	Mean load Variable load Total travel distance Travel distance by loading Pn	(N) (N) (mm) (mm)	Pmin: Minimum load Pmax: Maximum load	(N) (N)
	H OFOT Total travel distance L		H H H H H H H H H H H H H H H H H H H	
3) CHA	NGE IN A SINE CURVE			
	a) Pm ≒ 0,65max(3)		b) Pm ≒ 0,75 max(4)	


OAD P

Total travel distance L


9. Rating Life Calculation

Rating life needs to be calculated because Linear Motion guide's life differs even under same working conditions. Rating life of Linear Motion guide is the total travel distance that a Linear Motion guide system composed of a certain number of units can drive until flaking does not occur in 90% of the raceway surface or rolling elements after being run under same working conditions. If a ball or a roller is used as a rolling element, rating life can be calculated using the following formula.

Calculation formula of the rating life of ball-enabled Linear Motion guide

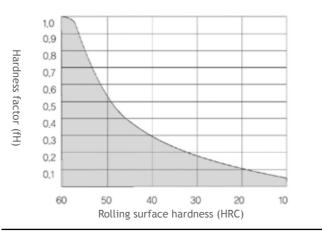
Calculation formula of the rating life of roller-e

If the length of stroke and the number of reciprocating motion are constant, life time can be calculated using rating life (L) by the formula below.

(N) (mm) ing motion per minute (mm ⁻¹)
t

LOAD P

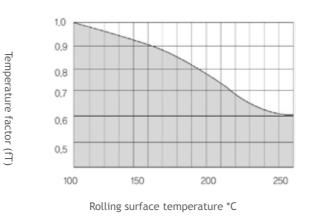
Total travel distance L


L:	Rating life	(km)
C:	Basic dynamic load rating	(N)
Pc:	Calculated load	(N)
fH:	Hardness factor	See Fig. 3
fT:	Temperature factor	See Fig. 4
fC:	Contact factor	See Table 2
fw:	Load factor	See Table 3
en	abled Linear Motion guide	

_:	Rating life	(km)
C:	Basic dynamic load rating	(N)
Pc:	Calculated load	(N)
fH:	Hardness factor	See Fig. 3
fT:	Temperature factor	See Fig. 4
fc:	Contact factor	See Table 2
fw:	Load factor	See Table 3

1) Hardness factor (fH)

To realize the best performance of Linear Motion guide, the proper hardness and depth should be maintained between the block contacting a rolling element (ball or roller) and the raceway surface of rail. RBX Linear Motion guide has HRC58-64 surface hardness, so there is no need to consider hardness factor. But if the hardness is lowered than baseline, Linear Motion guide's load capacity decreases so hardness factor needs to be reflected in calculating life.


FIGURE 3. HARDNESS FACTOR (FH)

2) Temperature factor (fT)

If high temperature over 100° C is applied to Linear Motion guide, temperature factor (fT) needs to be taken into account when selecting Linear Motion guide. RBX Linear Motion guide must be used at less than 80° C. But you have to use it at over 80° C, please use a high-temp Linear Motion guide - RBX's specially customized product.

FIGURE 4. TEMPERATURE FACTOR (FT)

Note) In ambient temperature of over 80° C, materials for seal, end plate, and support plate should be changed to the specifications for high temperature

3) Contact factor (fc)

If over two blocks of Linear Motion guide are closely assembled, since uniform load may not be applied to

assembled, since uniform load may not be applied to blocks due to difference among mounting surfaces, you have to multiply basic static load rating (C) and basic dynamic load rating (Co) by contact factor shown in Table 2.

Table 2.

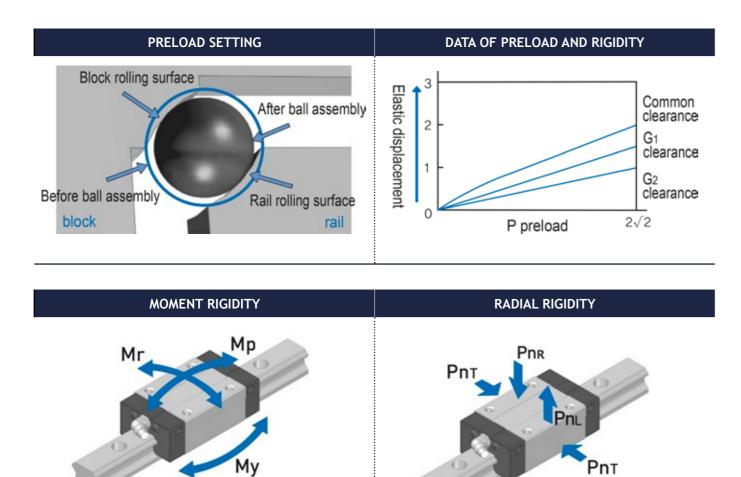
NO. OF BLOCKS CONTACTED	CONTACT FACTOR (fc)
2	0.81
3	0.72
4	0.66
5	0.61
Over 6	0.6
Common use	1.0

4) Load factor (fw)

Generally the static load applied to the block of Linear Motion guide can be calculated by formula. But the load applied to the block while running the machine tends to come from vibration or impact. Therefore, you have to consider load factor (fw) shown in Table 3 for the vibration or impact load during the speedy running of the machine. It can be calculated by dividing the basic dynamic load rating of Linear Motion guide by load factor (fw).

EXTERNAL CONDITION	SERVICE CONDITIONS	LOAD FACTOR (fw)
Low	There is no external vibration or impact due to the smooth running of machine at mild speed	1.0 ~ 1.3
Moderate	There is moderate external vibration or impact due to the running of machine at low speed	1.2 ~ 1.5
Big	There is strong vibration or impact due to the running of machine at fast speed	1.5 ~ 2.0
Very big	There is strong vibration or impact due to the running of machine at very fast speed	2.0 ~ 4.0

Rigidity & Preload


Preload
 Radial Clearance

04

1. Preload

Linear Motion guide is preloaded in a way that improves mechanical precision by eliminating clearance using the rolling element (ball or roller) inserted into the space between rail and the block or in a way that applies load to the rolling element in advance by inserting the rolling element larger in size than the clearance of raceway between rail and the block. This process will enhance the rigidity of Linear Motion guide and lessen the displacement level caused by external load.

2. Radial Clearance

Radial clearance refers to the total travel distance in a radial direction from the center of the block of Linear Motion guide when mild load is applied to the block up and down from the center part of the rail length after the block is assembled in the rail which is then fixed to base. Radial clearance is usually classified into common clearance (no symbol), G1 clearance (light preload), G2 clearance (heavy load), and Gs clearance (special preload), and are optional depending on usage. The values are standardized by form.

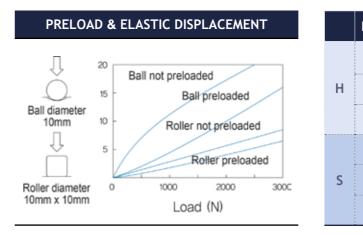


Table 4. Service condition for radial clearance (preload)

ТҮРЕ	PRELOAD STATUS	SYMBOL	SERVICE CONDITIONS	USE
1. MODERATE	Plus-minus clearance	№ (1)	 Load is applied in uniform direction and smooth running is needed. There is almost no vibration or impact and precise running is required. 	Welding machine, textile machinery, packaging machinery, various conveyors, medical equipment, woodworking machine, glass cutting machine, takeout robots, ATC, winding machine
2. LIGHT	Minus clearance in small amount	G1 (2)	 There is a little vibration or impact and moment load. Light load is applied, yet high precision is required. 	Various industrial robots, measuring equipment, inspection equipment, 3D processor, laser processor, PCB drilling machine, various assembling machine, electric spark machine, punching press
3. HEAVY	Minus clearance in large amount	G2 (3)	•There is mild impact load or overhang load and moment load. Rigidity and high precision are required.	CNC shelf, machining center, milling machine, grinding machine, tapping center, drilling machine, hobbing machine, various special equipment
4. SPECIAL	Minus clearance in small or large amount	Gs (4)	•With smaller clearance than that of G1 preload, light and precise operation is required.	No preload, ultra-light preload, larger- than-moderate preload, special preload customized to user's conditions, special processing machine for heavyduty cutting

Note (1) No clearance or very small clearance.

(2) Very small minus clearance.

(3) Quiet large minus clearance to enhance rigidity.

(4) Preload below G1 or over G2 to meet service conditions.

PRELOAD TYPE	PRELOAD SYMBOL	PRELOAD
MODERATE	NO SYMBOL	0 ~ 0.03 x C
LIGHT	G ₁	0.04 ~ 0.08 x C
HEAVY	G ₂	0.09 ~ 0.13 x C
MODERATE	NO SYMBOL	0 ~ 0.03 x C
LIGHT	G ₁	0.03 ~ 0.05 x C
HEAVY	G ₂	0.06 ~ 0.08 x C

ity. conditions.

Table 5. Radial clearance of RBH & RBS & RBHS Series

				SYMBOL	
	MODEL NO.		MODERATE	LIGHT PRELOAD	HEAVY PRELOAD
			NO SYMBOL	G1	G2
RBH15	RBS15	-	-4 ~ +2	-12 ~ -4	-
RBH20	RBS20	-	-5 ~ +2	-14 ~ -5	-23 ~ -14
RBH25	RBS25	RBHS25	-6 ~ +3	-16 ~ -6	-26 ~ -16
RBH30	-	RBHS30	-7 ~ +4	-19 ~ -7	-31 ~ -19
RBH35	-	RBHS35	-8 ~ +4	-22 ~ -8	-35 ~ -22
RBH45	-	RBHS45	-10 ~ +5	-25 ~ -10	-40 ~ -25
RBH55	-	RBHS55	-12 ~ +5	-29 ~ -12	-46 ~ -29

Table 6. Radial clearance of RBW Series

	SYMBOL		
MODEL NO.	MODERATE	LIGHT PRELOAD	HEAVY PRELOAD
	NO SYMBOL	G1	G2
RBW17	-3 ~ 0	-7 ~ -3	-
RBW21	-4 ~ +2	-8 ~ -4	-
RBW27	-5 ~ +2	-11 ~ -5	-
RBW35	-8 ~ +4	-18 ~ -8	-28 ~ -18

Table 7. Radial clearance of RM & RMB Series

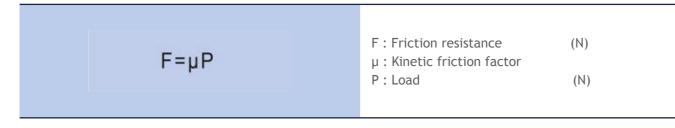
MODEL NO.		SYM	BOL
		MODERATE	LIGHT PRELOAD
	·	NO SYMBOL	G1
RM5	RMB5	0 ~ +1.5	-1 ~ 0
RM7	RMB7	-2 ~ +2	-3 ~ 0
RM9	RMB9	-2 ~ +2	-4 ~ 0
RM12	RMB12	-3 ~ +3	-6 ~ 0
RM15	RMB15	-5 ~ +5	-10 ~ 0
RM20	-	-7 ~ +7	-14 ~ 0

Table 8. Radial clearance of RBR Series

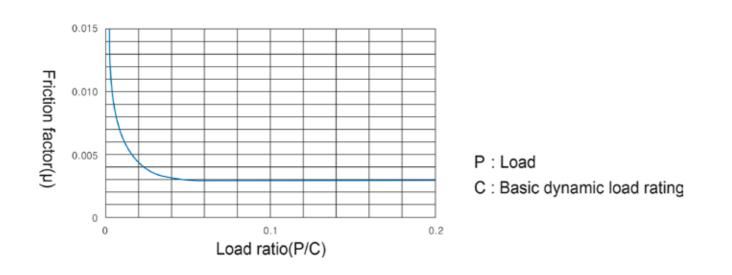
	SYMBOL		
MODEL NO.	MODERATE	LIGHT PRELOAD	HEAVY PRELOAD
	NO SYMBOL	G1	G2
RBR35	-2 ~ -1	-3 ~ -2	-5 ~ -3
RBR45	-2 ~ -1	-3 ~ -2	-5 ~ -3
RBR55	-2 ~ -1	-4 ~ -2	-6 ~ -4

1. Friction 2. Friction Coefficient

1. Friction



Linear Motion guide's friction resistance occurs to the level of 1/20-1/40 compared to existing sliding guide since the rolling element (ball or roller) is assembled between the rail and the block which is the raceway surface. Also starting torque is low because the difference between static friction and kinetic friction is very small. Its low power loss and temperature rise in the part of linear motion are of advantage to speedy operation. Its high conformability and response realize the highly precise positioning.


2. Friction Coefficient

Friction resistance of Linear Motion guide relies on the load applied to Linear Motion guide, speed, lubrication or form. In case of light load or high-speedy motion, lubrication or seal is the main cause of friction resistance. In case of heavy load or slow motion, the magnitude of load affects friction resistance.

FIGURE 5. RELATION BETWEEN LOAD RATIO AND FRICTION FACTOR

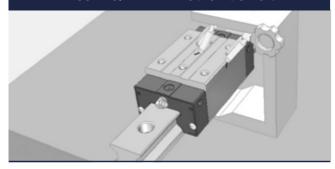
Common friction factors of various operating systems are shown in a table below and applied in case of proper lubrication or assembly and normal load.

TYPE OF OPERATING SYSTEM	MAJOR MODEL NUMBER	FRICTION FACTOR µ
Linear Motion Guide	RBH, RBH-S, RBW RBHS-S, RM, RMB	0.002 ~ 0.003
Linear Motion Guide	RBR	0.001 ~ 0.002
Ball Spline	WLS, WSP	0.002 ~ 0.003
Super Ball Bushing/Linear Ball Bushing	SB, SBE, LM, LME	0.001 ~ 0.003
Cross Roller Guideway	WRG	0.001 ~ 0.0025

Friction

06

1. Precision Specification 2. Precision Design 3. Dimension Tolerance and Difference 4. Selection of Precision Class



1. Precision Specification

The degree of travel of Linear Motion guide is measured as below. (See Figure 6.)

- a. Tighten rail to the mounting surface of the bed using a bolt at the prescribed torque.
- b. Draw a measuring jig right up against the datum plane of the block as shown in Figure.
- c. Measure it by having the block and measuring jig travel the whole section from the starting point to the end point of the rail.
- d. The value measured by the measuring jig is the error in the parallelism of motion of the block.

FIGURE 6. PARALLELISM OF MOTION

between the datum plane of block and that of rail.

Measuring the error in the degree of parallelization Difference between the maximum diference and minimum difference of blocks in each height and dimension installed to surface

D

FIGURE 7. DIFFERENCE OF BLOCK

2. Precision Design

Table 9. Classification of precision

DIMENSION	TERMS
Dimension tolerance of height H	Distance from the base side of rail A to the top side of block C
Difference in height H	Difference in the height of blocks combined from each rail on the same plane
Dimension tolerance of width W2	Distance between the datum plane of rail B and the reference side of block D
Difference in width W2	Difference of the reference axis of rail B and the reference side of block D of blocks combined to the rail
Parallelism of motion of C against A	Change in the top side of block C based on the base side of rail A during the motion of block combined to the rail
Parallelism of motion of D against B	Change in the reference side of block D based on the reference side of rail B during the motion of block combined to the rail

3. Dimension Tolerance and Difference

Table 10. Specifications for precision of Linear Motion guide (RBH, RBH-S, RBW, RBHS-S)

	TERMS	HIGH	PRECISION	SUPER PRECISION	ULTRA PRECISION	
DIMENSION	NO SYMBOL	Н	Р	SP	UP	
	NO STADOL	P6	P5	P4	P3	
Dimension tolerance of height H	±0.080	±0.042	±0.020	±0.010	±0.008	
Difference in height H	0.025	0.015	0.007	0.005	0.003	
Dimension tolerance of width W2	±0.100	±0.050	±0.025	±0.015	±0.010	
Difference in width W2	0.030	0.020	0.010	0.007	0.003	
Parallelism of motion of C against A	See Table 11					
Parallelism of motion of D against B	See Table 11					

Table 11. Length of rail and parallelism of motion of Linear Motion guide (RBH, RBH-S, RBW, RBHS-S) Unit: µm

LENGTH	OF RAIL	TERMS				
ABOVE	BELOW	MODERATE	HIGH	PRECISION	SUPER PRECISION	ULTRA PRECISION
		NO SYMBOL	P6	P5	P4	P3
-	50	5	3	2	1.5	1
50	80	5	3	2	1.5	1
80	125	5	3	2	1.5	1
125	200	5	3.5	2	1.5	1
200	250	6	4	2.5	1.5	1
250	315	7	4.5	3	1.5	1
315	400	8	5	3.5	2	1.5
400	500	9	6	4.5	2.5	1.5
500	630	11	7	5	3	2
630	800	12	8.5	6	3.5	2
800	1000	13	9	6.5	4	2.5
1000	1250	15	11	7.5	4.5	3
1250	1600	16	12	8	5	4
1600	2000	18	13	8.5	5.5	4.5
2000	2500	20	14	9.5	6	5
2500	3150	21	16	11	6.5	5.5
3150	4000	23	17	12	7.5	6

Unit: mm

Table 12. Specifications for precision of miniature Linear Motion guide (RM, RMB)

Unit: mm

Table 13. Length of rail and parallelism of motion of miniature Linear Motion guide (RM, RMB)

MODEL	DIMENSION	MODERATE	HIGH	PRECISION		
NO.		NO SYMBOL	P6	P5		
	Dimension tolerance of height H	±0.030	-	±0.015		
	Difference in height H	0.015	-	0.005		
5	Dimension tolerance of width W2	±0.030	-	±0.015		
Э	Difference in width W2	0.015	-	0.005		
	Parallelism of motion of C against A	See Table 13				
	Parallelism of motion of D against B	See Table 13				
7	Dimension tolerance of height H	±0.040	±0.020	±0.010		
9	Difference in height H	0.030	0.015	0.007		
12	Dimension tolerance of width W2	±0.040	±0.025	±0.015		
13	Difference in width W2	0.030	0.020	0.010		
15	Parallelism of motion of C against A	See Table 13				
20	Parallelism of motion of D against B	See Table 13				

LENGTH OF RAIL		PARALLELISM OF MOTION				
		MODERATE	HIGH	PRECISION		
ABOVE	BELOW	NO	н	Р		
		SYMBOL	P6	P5		
-	40	8	4	1		
40	70	10	4	1		
70	100	11	4	2		
100	130	12	5	2		
130	160	13	6	2		
160	190	14	7	2		
190	220	15	7	3		
220	250	16	8	3		
250	280	17	8	3		
280	310	17	9	3		
310	340	18	9	3		
340	370	18	10	3		
370	400	19	10	3		
400	430	20	11	4		
430	460	20	12	4		
460	490	21	12	4		
490	520	21	12	4		
520	550	22	12	4		
550	580	22	13	4		
580	610	22	13	4		
610	640	22	13	4		
640	670	23	13	4		
670	700	23	13	5		
700	730	23	14	5		
730	780	23	14	5		
760	790	23	14	5		
790	820	23	14	5		

Precision

Unit: µm

LENGTH	LENGTH OF RAIL		ELISM OF	MOTION
		MODERATE	HIGH	PRECISION
ABOVE	BELOW	NO	н	Р
		SYMBOL	P6	P5
820	850	24	14	5
850	880	24	14	5
880	910	24	14	5
910	940	24	14	5
940	970	24	14	5
970	1000	25	14	5
1000	1030	25	16	5
1030	1060	25	16	5
1060	1090	25	16	6
1090	1120	25	16	6
1120	1150	25	16	6
1150	1180	25	17	6
1180	1210	26	17	6
1210	1240	26	17	6
1240	1270	26	17	6
1270	1300	26	17	6
1300	1330	26	17	6
1330	1360	27	17	6
1360	1390	27	18	6
1390	1420	27	18	6
1420	1450	27	18	7
1450	1480	27	18	7
1480	1510	27	18	7
1510	1540	28	19	7
1540	1570	28	19	7
1570	1800	28	19	7

Table 14. Specifications for precision of roller Linear Motion guide (RBR)

Unit: mm

	HIGH	PRECISION	SUPER PRECISION	ULTRA PRECISION		
DIMENSION	н	Р	SP	UP		
	P6	P5	P4	P3		
Dimension tolerance of height H	±0.042	±0.020	±0.010	±0.008		
Difference in height H	0.015	0.007	0.005	0.003		
Dimension tolerance of width W2	±0.050	±0.025	±0.015	±0.010		
Difference in width W2	0.020 0.010 0.007 0					
Parallelism of motion of C against A	See Table 15					
Parallelism of motion of D against B		See Ta	ble 15			

Table 15. Length of rail and parallelism of motion of roller Linear Motion guide (RBR)

Unit: µm

LENGTH	OF RAIL				
ABOVE	BELOW	HIGH	PRECISION	SUPER PRECISION	ULTRA PRECISION
		P6	P5	P4	P3
-	50	3	2	1.5	1
50	80	3	2	1.5	1
80	125	3	2	1.5	1
125	200	3.5	2	1.5	1
200	250	4	2.5	1.5	1
250	315	4.5	3	1.5	1
315	400	5	3.5	2	1.5
400	500	6	4.5	2.5	1.5
500	630	7	5	3	2
630	800	8.5	6	3.5	2
800	1000	9	6.5	4	2.5
1000	1250	11	7.5	4.5	3
1250	1600	12	8	5	4
1600	2000	13	8.5	5.5	4.5
2000	2500	14	9.5	6	5
2500	3150	16	11	6.5	5.5
3150	4000	17	12	7.5	6

4. Selection of Precision Class

Table 16. For the selection of precision class of Linear Motion guide by unit, please refer to the table below.

-			PRECISIO	ON CLASS				PRELOAD	
APPLICATION	UNIT	MODERATE	HIGH	PRECISION	SUPER PRECISION	ULTRA PRECISION	MODERATE	LIGHT PRELOAD	HEAVY PRELOAD
APPL		NO SIGH	н	Р	SP	UP	NO SYMBOL	G1	G2
			P6	P5	P4	P3	STMDUL		
	CNC shelf		•	•	•				•
	Machining center		•	•	•				•
	NC milling machine		•	•	•				•
JOL	CNC tapping machine		•	•	•				•
MACHINE TOOL	NC boring machine		•	•	•				•
CHIP	NC drilling machine		•	•	•				•
MA	3D engraving machine		•	•	•				•
	Jig boring machine		•	•	•				•
	EDM electric spark machine			•	•	•		•	•
	Grinding machine			•	•	•			•
	Prober equipment					•		•	•
TNT	Wire bonder				•	•		•	•
IMAI	Sliding machine				•	•		•	
CONDUCTOR EQUIPMENT	Dicing saw machine				•	•		•	
TOR	IC test handler			•	•			•	
NDUC	PCB laser via-hole driller				•			•	
NCON	PCB inspection equipment			•	•			•	
SEMI	Laser marker			•				•	
	Chip mounter			•	•			•	
	Mac/Mic inspection equipment				•	•		•	
	Pattern test system				•	•		•	
	Exposure				•	•		•	
FPD	Laser repair			•	•	•		•	
L L	Lighting test equipment		•	•				•	
	Coder equipment			•	•			•	
	Chip bonding equipment		•	•				•	
	Dispenser equipment		•	•				•	

Precision

7			PRECISI	ON CLASS				PRELOAD	
APPLICATION	UNIT	MODERATE	HIGH	PRECISION	SUPER PRECISION	ULTRA PRECISION	MODERATE	LIGHT PRELOAD	HEAVY PRELOAD
APPLI		NO SIGH	н	Р	SP	UP	NO	G1	G2
			P6	P5	P4	P3	SYMBOL	U.	02
	Scriber		•	•				•	
	Glass edge grinding machine		•	•				•	
FPD	FPD measuring/test equipment			•	•			•	
Ë	Laminating equipment		•	•				•	
	Indentation test equipment								
	Prober equipment								
	Punching press		•					•	
Щ	Tire molder	•						•	
CHIN	Tire valcanizer	•						•	
L MA	Auto-shearing machine	•						•	
TRIA	Auto-welding machine	•					•	•	
INDUSTRIAL MACHINE	Conveyor	•					•		
Z	Textile machine	•					•		
	Injection molding machine	•					•	•	
	Cartesian coordinated robot	•	•	•				•	
С	Gantry robot	•	•					•	
DBOT	LTR robot		•	•				•	
INDUSTRIAL ROBOT	Take-out robot	•						•	
STRI/	Cylindrical coordinated robot		•					•	
NDU	Vacuum robot		•	•				•	
-	Robot carriage	•						•	
	Linear actuator		•	•	•		•	•	
	Office machine	•					•		
	FA transport system	•					•		
	Medical equipment	•					•	•	
OTHERS	Welding machine	•					•		
OTH	Painting machine	•					•		
	Precision XY table		•	•	•			•	
	UVW stage		•	•				•	
	3D measuring machine			•	•	•		•	

46

07

1. Purpose 2. Selection of lubricant 3. Grease lubrication 4. Oil lubrication

1. Purpose

The purpose of lubricating Linear Motion guide is to create an oil film between rail, the raceway surface of block and a rolling element to avoid the direct contact of metals and reduce friction and wear, preventing the raceway surface and the rolling element from being overheated and melted to be adhered to each other. Moreover, the oil film created between the raceway surface and a ball decreases load-induced contact stress to improve the rolling contact fatigue life and prevent rust. Linear Motion guide is equipped with seal but grease inside the block is leaking little by little during the operation. Therefore it is required to lubricate it at a time and interval appropriate to each service condition.

2. Selection of lubricant

To achieve the best performance of Linear Motion guide, you have to select the lubricant suitable for service conditions. Lubricants used for Linear Motion guide include grease and oil. You can select the lubricant and lubrication method that fit your service conditions, load, operating seed, assembly type, etc.

3. Grease lubrication

Grease is a semisolid lubricant consisting of base oil, thickener, and additives.

In case of using grease for Linear Motion guide, lithium soap grease is commonly used, but grease mixed with extreme-pressure additive is used under high load or according to use. If you want to use Linear Motion guide in a high-vacuum environment or a clean room, it's desirable to choose grease with excellent performance in low evaporation and low dust raise.

1) Refilling of greas

To refill grease to Linear Motion guide, supply a sufficient amount of grease through the nipple until remaining grease is discharged. It is appropriate to fill grease up to 50% of the volume of the block. To reduce rolling resistance which may increase after grease is filled, it is better to take a test run about 20 times prior to the operation.

2) Refill interval

If Linear Motion guide's travel exceeds a certain time, its lubricating performance declines. So it is required to refill an appropriate amount of grease at a proper time depending on service conditions and environment. Usually grease is to be filled when the travel distance reaches 100 KM.

T=	100 X 6000 hr	T : Oil refilling cycle (time
1-	Ve X 60 nr	Ve : Velocity (m/min)

4. Oil lubrication

In case of using oil for Linear Motion guide, it is recommended to use oil lubricant with high viscosity (68mm²/ sec) under higher load while oil lubricant with low-viscosity (13mm²/sec) at high velocity. It is appropriate to refill 0.3 cm³ of oil per hour for each one block.

Table 17. Inspection and refilling time of lubricant

ТҮРЕ	INSPECTION ITEM	INSPECTION PERIOD	REFILLING TIME
Grease	 Status of mixing with cutting chip, dust, foreign substance Status of contamination by other substances 	3~6 months	 Generally 1-2 times per year Usually more than once per year if travel exceeds 100km/year Refill depending on the situation after checking the status of grease
Oil	Lubricant quantity, contamination, foreign substance	3~6 months	•Refill depending on the results of inspection, and determine the optimal amount to refill depending on the capacity of oil tank
UI	Check oil level (supply oil mist)	Before every operation	 Refill an appropriate amount after identifying the consumption Standardize the optimal amount after identifying the consumption

• Please do not use oil that may affect synthetic resin which is the material of Linear Motion guide units.

Table 18. Lubricants used for Linear Motion guide

APPLICATION	MAIN USE	PRODUCT NAME	MANUFACTURER	TEMP. IN USE (°C)	BASE OIL	TYPE OF THICKENER
Common use (etreme-pressure additive incl.)	Industrial machine, machine tool	BW EP NO.2	BWC	-20 ~ +105	Mineral oil	Lithium
Common use	Machine tool, electric spark machine, industrial robots, etc.	GADUS S2 V220 00	SHELL	-30 ~ +110	Mineral oil	Lithium
Clean & low dust raise	Semiconductor, FPD equipment	SNG 5050 DEMNUM	NTG DAIKIN	-40 ~ +1200 -50 ~ +300	Synthetic oil	Urea
Eco-friendly	Semiconductor AMOLED process equipment, driving gear in vacuum chamber	FOMBLIN Krytox High vacuum grease	AUSIMONT DuPont Dow Corning	-20 ~ +250	Synthetic oil	Ethylene fluorinate
Machine tool	Excellent in preventing rust and oil film strength Suitable for machine tools because it is hardly emulsified to clearance	VACTRA No.2 SLC DTE Oil	Exxon Mobil	-20 ~ +100	Oil	Way oil Turbine oil
Special use	Corrosion proofin	6459 Grease	SHELL	-20 ~ +100	Mineral oil	Polyurethane

Surface

08

1. Surface Treatment 2. Types of Surface Treatment

1. Surface Treatment

RBX uses the following methods for the optimal treatment of surfaces of Linear Motion guide in order to prevent rust and enhance appearance.

1) Electrolytic rust-preventive black coating (black Cr plating)

This is an industrial black chrome coating which is used to improve the corrosion resistance at low cost. It can achieve better corrosion resistance than martensite stainless steel and be used to enhance appearance and prevent the reflection of light

2) Industrial hard Cr plating

The film's hardness is over 850HV so its wear resistance is excellent and the corrosion resistance is comparable with that of martensite stainless steel. RBX offers surface treatments such as alkaline coloring or color alumite treatment if a customer requests. If you want use Linear Motion Guide by treating its surface, you have to set the safety factor high.

3) Fluoride low-temperature Cr plating

It is also called "Raydent". This is a combined surface treatment of black Cr coating with special fluoride resin coating which is used in where corrosion resistance or low dust raise is needed - for instance clean room.

09

1. Dust Proof 2. Types of Dust Proof

1. Dust Proof

To make use of the characteristics and performance of Linear Motion guide, it is important to protect the unit from external foreign substances which are likely to cause abnormal wear or shorten life. If dust or foreign substance is expected to be mixed in, it is required to use the effective sealing or dust-proofing system.

2. Types of Dust Proof

RBX Linear Motion guide is basically equipped with seal but if a customer requests, a metal scraper can be additionally mounted on the unit before shipment.

1) Exclusive seal

The block is equipped with end seals, side seals and inner seals to protect the bearing from foreign substances.

2) Metal scraper

A metal scraper is installed outside the end seals and effective in preventing foreign substances such as hot spatter or slag created during a welding process from entering into the unit.

Measure to Use in Special Environment

RBX Linear Motion guide is useful in various special applications if being used in accordance with service conditions including material, surface treatment, dust proof, grease, etc.

Table 19.

APPLICATION	CONDITIONS OF USE		COUNTERMEASURE
Clean (clean room)	•If used in a clean	Lubricant	For use in a clean environmentUse low dust raise grease
- Semiconductor, FPD, medical equipment -	environment, dust or particles generated in Linear Motion guide should be minimized.	Rust prevention	 Black Cr coating Fluoride low-temperature colorimetric Cr plating (Raydent treatment) Use high-corrosion resistant stainless steel as material
	•If used in a vacuum environment, out gas discharged from	Lubricant	•Use grease for a vacuum environment
Vacuum - Semiconductor, FPD deposition equipment -	Linear Motion guide should be tightly controlled to maintain the vacuum status. •Great rust prevention is required since rust-prone parts cannot be used in this environment.	Rust prevention (Out Gas)	 Use high-corrosion resistant stainless steel as material Use a self oiling agent using special coatings such as fluoroplastic coating Use ceramic as material
	• If used in higher temperature than general environment, the material's heat resistance is important and plastic synthetic resin used for parts should be replaced with metal.	Lubricant	•Use grease for high-temperature environments
High-temperature environment		Material	 Use an end seal, side seal + double seal Use a double seal Use a special seal for high temperature
	•If used in an environment	Seal	 Use a plastic synthetic resin cap Use a metal cap Use a metal scraper
Dust	filled with cutting chips, wood dust, and dust, it is required to develop a measure to protect the block	Сар	 Use a plastic synthetic resin cap Use a metal cap Use a seal plate
	from foreign substances.	Holding door	 Use an exclusive holding door Use an all-in-one sealing holding door
Spatter	 If exposed to a spot welding or arc welding environment, 	Spatter	•Fluoride black Cr coating
	hot spatter could be adhesion on the rail. So effective measures are	Seal	•Use a metal scraper
	needed to prevent it.	Dust proof	•Use a metal cap •Use a seal plate

Placement and Installation

- 1. Placement and Structure
 - 2. Mounting and Fixation
 - - - during installation

3. Design of mounting surface during installation

4. Error tolerance of mounting surface

5. Marking of datum plane during installation 6. Connection of rails

7. Installation of Linear Motion Guide 8. Torque used to fasten bolts during the assembly of Linear Motion guide 9. Directions of bolt fastening by Linear Motion guide type

1. Placement and Structure

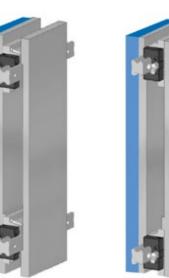
To place Linear Motion guide in the equipment, first identify the overall structure of the equipment, then check the size of the base and a transfer table and consider load applied according to mounting directions such as placing vertically, in slope, or in the back as well as required life to make sure Linear Motion guide is optimally installed.

Placement of Linear Motion guide (example)

(1) Assembly of the top side of block, block transfer

(2) Assembly of the back side of block, rail transfer

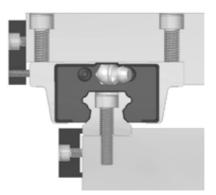
(3) Assembly of the flank of block, block transfer



(4) Assembly of the flank of block, rail transfer

(5) Assembly of the wall side of block, rail transfer

(6) Assembly of the wall side of block, block transfer


- (7) Symmetrical assembly of the top and bottom of block, rail transfer
 - (8) Symmetrical assembly of the top and bottom of block, block transfer

2. Mounting and Fixation

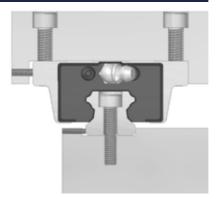
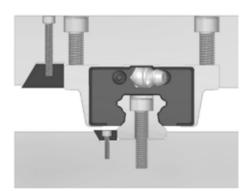

In the structure that vibration or impact is applied or where combined load or moment load is applied, Linear Motion guide should be fixed in a different way from a general method.

FIGURE 8. PUSHING A PRESSURE PLATE FROM THE FLAN

As a widely used method, push a pressure plate from the flank after slightly protruding the block and rail of LM unit.


FIGURE 10. PUSHING A BOLT FROM THE FLAN

Need to use miniature bolts due to space constraint when pushing the rail and useful if having many bolts for pushing.

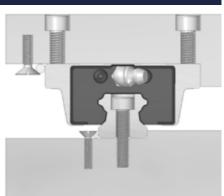
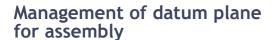


FIGURE 9. PUSHING A TAPERED PLATE

Fasten a tapered fixture with a bolt. Even slight bolting up generates big force in a horizontal direction. If it is bolted up too much, deformation may occur in rail, for instance, which needs to be taken a caution.

FIGURE 11. PUSHING A ROLLER

Push a needle roller with the head of a countersunk screw using a roller of the bed. You must be careful to push it to fit the screw.


3. Design of mounting surface during installation

Design and management of mounting surface

The precision of mounting surface of Linear Motion guide and the error in installation generate unexpected load and stress to the unit, therefore it is required to take caution to prevent the harmful effects on the unit's travel and life.

Management of vertical angle of datum plane for installation

If the vertical angle of the installation surface and of a rail or a block is inaccurate, it cannot be assembled precisely. So you need to review the vertical angle and error during design.

It is important to manage the height and thickness of datum plane during design. If the height is too high or low, a rail or a block cannot be assembled precisely due to its surface attachment. Or the application of eccentric load, horizontal load and moment load may loosen the strength of joint and result infaulty assembly which will be unable to meet the precision requirements. So attention must be paid.

Management of the shape of contact corner

If the right-angled corner of a rail or a block installed to the mounting surface of Linear Motion guide is processed in R-shape and R value is bigger than the dimension of the surface of the rail or the block, it may not be assembled precisely to the datum plane. So attention must be paid.

FIGURE 12. SHAPE OF EDGES

FIGURE 13.

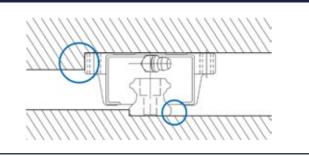
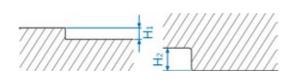
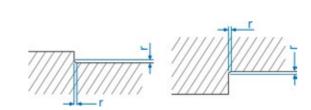
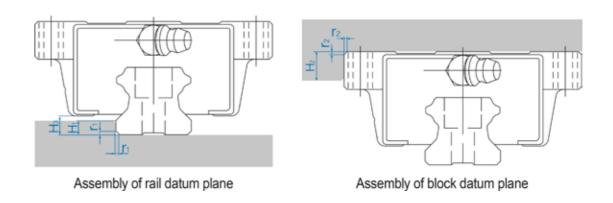




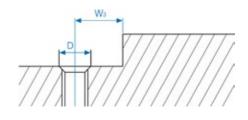
FIGURE 14. VERTICAL ANGLE OF CONTACT DATUM PLANE


FIGURE 15. DIMENSION OF CONTACT DATUM PLANE

Management of dimensional tolerance between datum plane and bolt during design

If the dimensional tolerance from the contact datum plane to the mounting hole of a rail or a block of Linear Motion guide is too big, precise assembly is impossible so attention must be paid. Generally the dimensional tolerance is ±0.1mm. If the distance tolerance from the assembly datum plane to the assembly bolt roll of a rail and a block is too wide or narrow, precise assembly is impossible. So the tolerance must be W3±0.1mm during design.

FIGURE 17. HEIGHT OF THE RAISED SPOT OF MOUNTING SURFACE AND RADIUS OF CORNER R



- positioning of a rail and a block during the installation of Linear Motion guide.
- specifications of Linear Motion guide so please see the table below.
- thickness must be secured during design.

DRU Corios DRU C Corios DRUC C Corios

KDH Series, KDH-5 Series, KDH5-5 Series					Unit: mm
Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H2	H3
15	0.5	0.5	3	4	4.7
20	0.5	0.5	3.5	5	6
25	1	1	5	5	7
30	1	1	5	5	7.5
35	1	1	6	6	9
45	1	1	8	8	10
55	1.5	1.5	10	10	13

FIGURE 16. DIMENSIONAL TOLERANCE BETWEEN CONTACT DATUM PLANE AND MOUNTING HOLE

Make a datum plane which can contact the flank in order to secure convenience in assembly of and precision

The height of the raised spot of contact datum plane or the radius of corner may vary depending on the

To prevent deformation of the raised spot by pressing force from above or pushing force from side, sufficient

Unit: mm

RBW Series

Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H2	H3
17	0.4	0.4	2	4	2.5
21	0.4	0.4	2.5	5	3.3
27	0.4	0.4	2.5	5	3.5
35	0.8	0.8	3.5	5	4

RBS Series, RBS-S Series

Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H2	H3
15	0.5	0.1	2.5	4	4.5
20	0.5	1	4	5	6
25	1	1	5	5	7

RM Series, RMB Series

Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H2	H3
5	0.2	0.2	0.8	2	1
7	0.2	0.2	1.2	2.5	1.5
9	0.2	0.2	1.5	3	2
12	0.2	0.2	2.5	4	3
13	0.2	0.2	3	4.5	4
15	0.2	0.2	3	4.5	4
20	0.2	0.2	4	5	5

RBR Series

Model No.	Radius of corner of the installation to rail r1(max.)		Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H2	H3
35	1	1	5	6	6.5
45	1.5	1.5	6	8	8
55	1.5	1.5	8	10	10

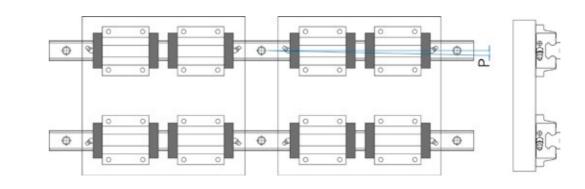
Unit: mm

Unit: mm

Unit: mm

Unit: mm

4. Error tolerance of mounting surface during installation


1) Auto-adjusting and error-absorbing abilities

Linear Motion guide has an excellent auto-adjusting ability so that even though the structure to be assembled to a rail is slightly deformed or processing error may occur, the straightness or parallelism of a table after assembly will be better than the precision in processing before assembly and the quite straight-line running is available.

2) Error tolerance of the degree of parallelization when using 2-axis assembly (P1)

The error in the degree of parallelization when using a 2-axis assembly is as shown below.

FIGURE 18. ERROR TOLERANCE OF THE DEGREE OF PARALLELIZATION (P)

RBH Series, RBH-S Series, RBHS-S Series

Model No.	Common clearance	G1 clearance	G2 clearance
15	25	18	-
20	25	20	18
25	30	22	20
30	40	30	27
35	50	35	30
45	60	40	35
55	70	50	45

RBW Series

Model No.	Common clearance	G1 clearance	G2 clearance
17	20	15	-
21	25	18	-
27	30	20	-
35	30	22	20

Unit: µm

Unit: µm

RBS Series, RBS-S Series

Common clearance

25

25

30

Model No.

15

20

25

RM Series, RMB Series

Unit: µm

Unit: µm

Unit: µm

G2 clearance

-

18

20

RBH Series, RBH-S Series, RBS Series, RBS-S Series, RBHS-S Series

Model No.	Common clearance	G1 clearance	G2 clearance
15	0.26L	0.17L	
20	0.26L	0.17L	0.10L
25	0.26L	0.17L	0.14L
30	0.34L	0.22L	0.18L
35	0.42L	0.30L	0.24L
45	0.50L	0.34L	0.28L
55	0.60L	0.42L	0.34L

RBW Series

Model No.	Common clearance	G2 clearance	
17	0.13L	0.04L	-
21	0.26L	0.17L	-
27	0.26L	0.17L	-
35	0.26L	0.17L	0.14L

RM Series, RMB Series

Model No.	Common clearance	G1 clearance
5	0.04L	-
7	0.05L	-
9	0.07L	0.01L
12	0.10L	0.02L
13	0.12L	0.04L
15	0.12L	0.04L
20	0.14L	0.06L

RBR Series

Model No.	Common clearance	G1 clearance	G2 clearance		
35, 45, 55	0.22L	0.17L	0.12L		

Model No.	Common clearance	G1 clearance
5	2	-
7	3	-
9	4	3
12	9	5
13	10	6
15	10	6
20	13	8

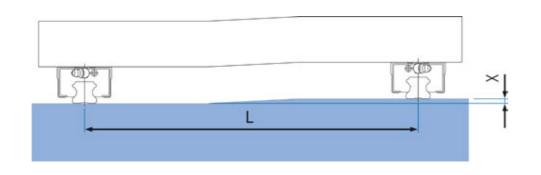
G1 clearance

18

20

22

RBR Series


Model No.	Common clearance	G2 clearance	
35	14	10	7
45	17	13	9
55	21	14	11

3) Error tolerance of height during 2-axis assembly (P2)

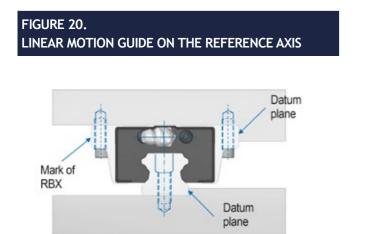
If the error in height is too big, the block may be distorted and its rigidity may be affected as the raceway groove of the block and the contact angle of a ball or a roller which is the rolling element are altered.

The error tolerance of height level in using 2-axis Linear Motion guides is as follows.

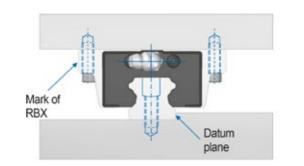
FIGURE 19. ERROR TOLERANCE OF HEIGHT LEVEL IN 2-AXIS (X)

Unit: µm

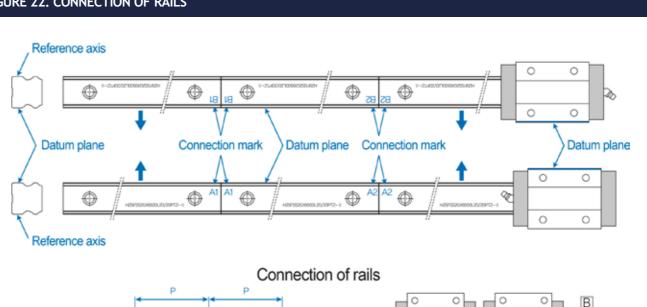
Unit: µm

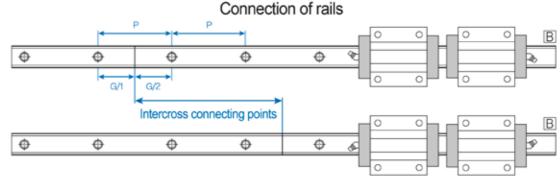

Unit: µm

Unit: µm


5. Marking of datum plane during installation

The datum plane of RBX's Linear Motion guide is the ground surface on the opposite side of RBX mark shown in the block.

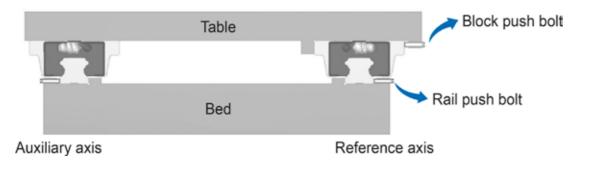

FIGURE 21. LINEAR MOTION GUIDE ON THE DRIVEN SHAFT



6. Connection of rails

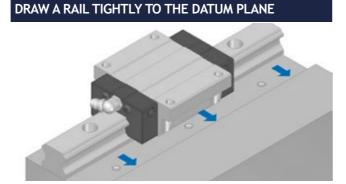
If you need a longer rail than the one supplied, you can connect rails for the purpose of use. The mark on the rail indicates the point where rails should be linked. If the block passes through the connecting points simultaneously, they may affect the unit's travel and cause a delicate hitch. To solve this problem, it is recommended to make sure the connecting points intercrossed.

FIGURE 22. CONNECTION OF RAILS

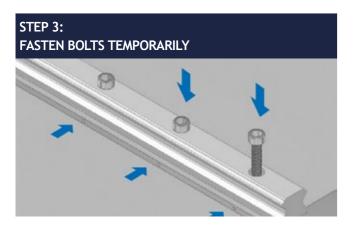

Intercross connecting points

7. Installation of Linear Motion Guide

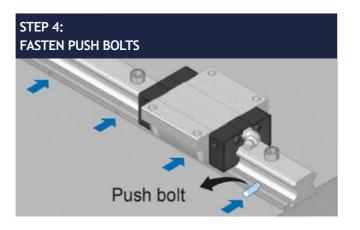
1. Installation of Linear Motion guide in the equipment exposed to vibration and impact



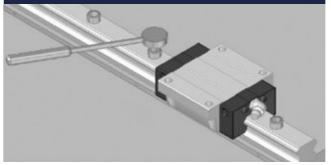
STEP 2:


1) Install a rail

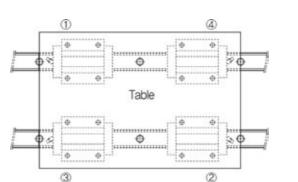
STEP 1: CHECK THE SURFACE TO BE INSTALLED WITH A RAIL


Prior to installation, throughly remove burr, dust, rust preventive oil, etc.

Gently place Linear Motion guide on the bed and push it in the opposite direction of the bed's datum plane



Check the status of bolts and fasten every bolt temporarily


Fix push bolts to make sure that the rail is parallel with the datum plane of the bed.

STEP 5: FIX AND FASTEN ASSEMBLY BOLTS USING A TORQUE WRENCH

Fasten all bolts using the recommended torque. Fasten the bolt in the center first and then continue fastening each bolt toward both ends in order to maintain the precision of rail during assembly.

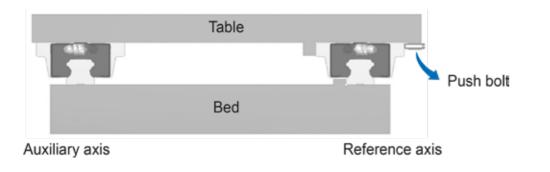
2) Install a block

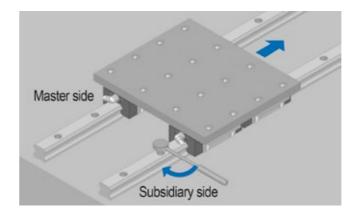
STEP 6: ASSEMBLE AN AUXILIARY AXIS

Repeat the procedure above for the installation of an auxiliary axis

Step 1: Assembly bolts temporarily

Place a table on the block and fasten all bolts temporarily.

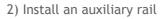

Step 2: Fasten bolts tightly

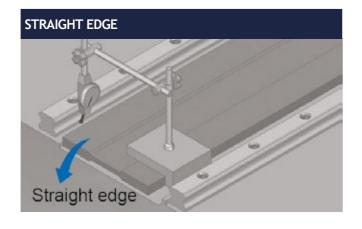

Fix the main rail block to the opposite side of the table's datum plane using a push bolt and adjust the position of the table.

Step 3: Fix and fasten assembly bolts

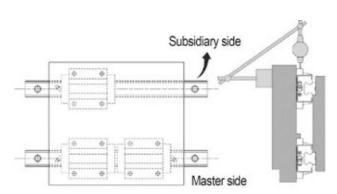
Completely fasten all bolts on the datum plane and subsidiary side in the order of 1 to 2.

2. Installation of Linear Motion guide without a push bolt

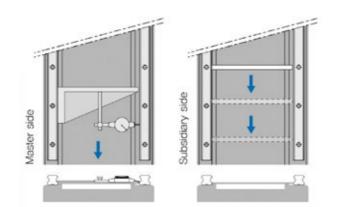




1) Install a master rail



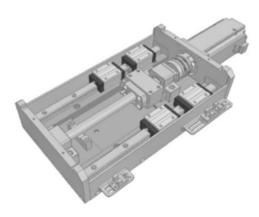
Fasten bolts temporarily and push a master rail toward the datum plane using a C-vise. Fasten the bolts according to the prescribed torque and order.


Place a straight edge between two rails and make sure it is parallel with the master rail that is fixed temporarily. Check the degree of parallelism with the dial gauge and adjust the rail if needed. Then, fasten bolts in order.

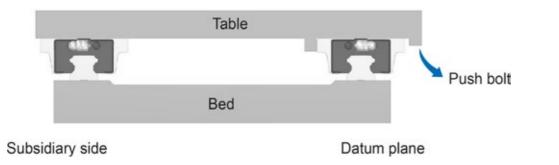
Assembly using a table

- 1. Fix two blocks on the datum plane and one block on the subsidiary side to a table.
- 2. Fix another auxiliary block and rail to the table and bed temporarily.
- 3. Place a dial gauge on the table and make sure a prober of the gauge contact the subsidiary side of the block.
- 4. Separate the table from the end of the rail and check the degree of parallelization of the block with the auxiliary rail.
- 5. Fasten bolts in order.

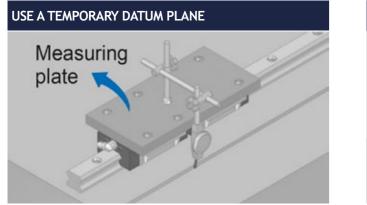
ASSEMBLY USING A JIG

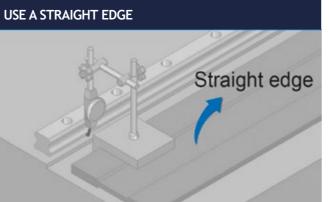


Move the position of a block in every bolt pitch at the end of the rail in consecutive order and fasten bolts in order by adjusting the degree of parallelism between the datum plane of a reference rail and that of an auxiliary rail using a special jig.


Assembly using a rail on the datum plane

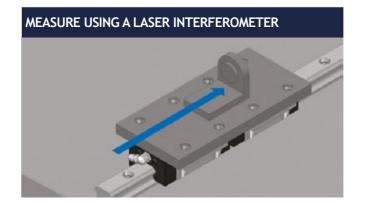
- 1. Fix two blocks on the datum plane and one block on the subsidiary side to a table.
- 2. Fix another auxiliary block and rail to the table and bed temporarily.
- 3. Separate the table from one rail and make an adjustment by considering the rolling resistance during the movement and checking the degree of parallelization of the auxiliary rail.
- 4. Fasten bolts in order.

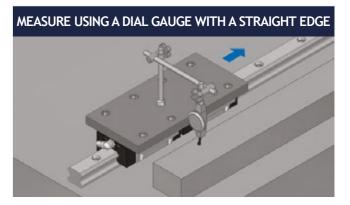

INSTALLATION COMPLETION OF LINEAR MOTION GUIDE


3. Installation of Linear Motion guide without the datum plane for a reference rail

1) Install a reference rail

Fix two blocks together onto the measuring plate and install the temporary datum plane near the surface where a rail is to be installed on the bed. Then check and adjust the degree of parallelism of the rail and fasten bolts in order.




Fix a rail to the bed temporarily and adjust it to be straight using a dial gauge and then fasten bolts in order.

2) Apply the same method when installing the auxiliary block and rail

4. Measure precision after installation

You can check the precision of travel by fixing two blocks onto the measuring plate. Use a dial gauge with a straight edge or a laser interferometer to measure the precision. In case of using a dial gauge, you have to place the straight edge as close to the block as possible in order to accurately measure it.

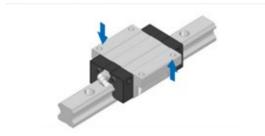
8. Torque used to fasten bolts during the assembly of Linear Motion guide

1) Select the optimal torque for bolts

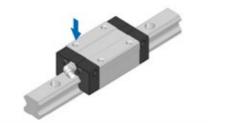
For the assembly of the rail of Linear Motion guide, the optimal clamping torque must be used depending on the materials of mounting surface or bolts. Inaccurate clamping torque may affect the mounting precision of the rail so please use a torque wrench.

2) Recommended torgues by the material of mounting base of Linear Motion guide

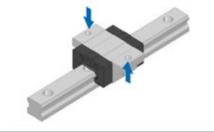
Unit: N•m

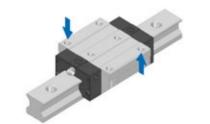

Unit: N•m

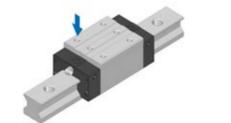
Delt og esifiertion	Torque value (Unit: N·m)									
Bolt specification	Steel	Casting	Aluminium							
M3	2	1.3	1							
M4	4	2.7	2							
M5	8.8	5.9	4.4							
M6	13.7	9.2	6.8							
M8	30	20	15							
M10	68	45	33							
M12	120	78	58							
M14	157	105	78							
M16	196	131	98							
M20	382	255	191							


3) Recommended torques by the material of bolts

Clamping torque Clamping torque Bolt Bolt SCM SCM Carbon Carbon specification specification steel bolt steel bolt steel bolt steel bolt M2.3 0.4 M12 108 76 -M2.5 0.6 M14 172 122 -M3 1.7 M16 263 196 1.1 4.0 2.5 M18 265 M4 -7.9 M5 5.1 M20 512 -13.3 M22 M6 8.6 -520 M8 32.0 22.0 M24 882 -M10 62.7 43.0 M30 1750 -


9. Directions of bolt fastening by Linear Motion guide type


Since the flange of a block is tapped and the counter bore is processed in the bottom, bolts can be assembled both from bottom to top and from top to bottom as indicated by arrows. But, if bolts are fastened from bottom to top, it is recommended to use one size smaller bolts.



use one size smaller bolts.

Since the flange of a block is tapped and the counter bore is processed in the bottom, bolts can be assembled both from bottom to top and from top to bottom as indicated by arrows. But, if bolts are fastened from bottom to top, it is recommended to use one size smaller bolts.

Since the rectangular body of a block is tapped, it is used when bolts are fastened from top to bottom as indicated by arrows.

RBH-F, RBH-FL, RBH-SF, RBH-SFL

RBH-R, RBH-RL, RBH-SR, RBH-SRL

Since tap is processed in the square body of the block, it is used when bolts are fastened from top to bottom as indicated by arrows.

RBS-C, RBS-R, RBS-SC, RBS-SR

Since tap is processed in the rectangular body of the block, it is used when bolts are fastened from top to bottom as indicated by arrows.

RBS-CF, RBS-F, RBS-SCF, RBS-SF

Since the flange of a block is tapped and the counter bore is processed in the bottom, bolts can be assembled both from bottom to top and from top to bottom as indicated by arrows. But, if bolts are fastened from bottom to top, it is recommended to

RBR-F, RBR-FL

RBR-R,RBR-RL

Types of Linear Motion Guide

1. Linear Motion Guide RBH Series 2. Spacer Chain Guide RBH-S Series

3. Slim Linear Motion Guide RBS Series 4. Slim Spacer Chain Linear Motion Guide RBS-S Series 5. Miniature Linear Motion Guide RM Series 6. Wide Miniature Linear Motion Guide RMB Series 7. Roller Linear Motion Guide RBR Series

1. Linear Motion Guide RBH Series

1) Structure of RBH Series

RBX Linear Motion Guide RBH Series has a four-row circular arc-groove structure in the raceway groove of a rail or a block and is a 4-direction equal load type which can bear equal load rating for vertical compression load, tensile load, and horizontal load as the rolling element is combined with balls at 45 degree, which reduces friction resistance to ensure smooth motion and long life.

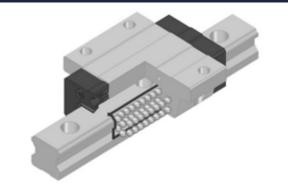
Also if the ball is preloaded, it can enhance the rigidity of Linear Motion guide and minimize Linear Motion guide's displacement for external load.

2) Features of RBH Series

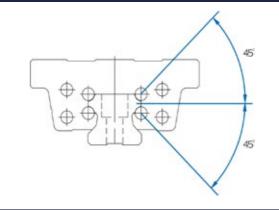
- a. High quality and very effective in realizing high precision and elimination of labor
- b. High rigidity and high precision which can realize the stable travel for a long time
- c. Great wear resistance and friction resistance which ensures a long life
- d. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- e. Various specifications for easy design
- f. Easy to use due to great compatibility between a rail and a block

2. Spacer Chain Guide RBH-S Series

1) Structure of RBH-S Series

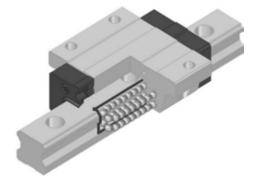

Linear Motion Guide RBH-S Series has a 4-direction equal load type which is identical to RBH Series and has an auto-adjusting face-to-face D/F structure. It uses balls as a rolling element and combines a spacer between balls to prevent them from colliding each other during the rolling motion. Therefore it makes less noise and more stable circulating motion than a full-ball type to realize quiet running and the spacer act as the pocket of lubricant to obtain longer life than RBH Series.

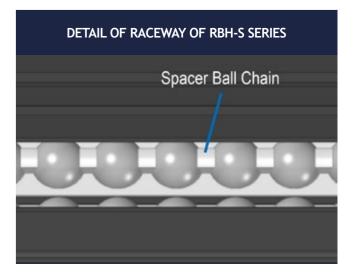
2) Features of RBH-S Series


- a. As a spacer-incorporated type which improves frictional properties and prevents the collision of balls, it not only allows stable circulating motion and smooth running but also reduces noise. If special lubricating seal is attached to lengthen life, maintenance-free operations can be achieved.
- b. Collision between balls and the loss of oil film are prevented by applying a resin spacer to improve life and generate less particles and dust.
- c. High quality in realizing high precision and high velocity so it could create large effect on elimination of power loss.
- d. High rigidity and high precision which can realize the stable travel for a long time
- e. Great wear resistance and friction resistance which ensures a long life
- f. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- g. Various specifications for easy design
- h. Easy to use due to great compatibility between a rail and a block

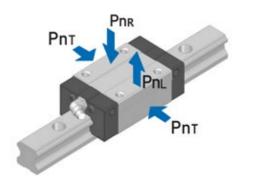
Linear Motion Guide

RBH SERIES (FULL-BALL TYPE)

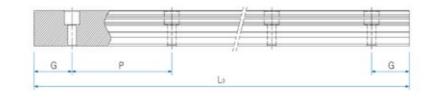

CROSS SECTION



MOMENT RIGIDITY



RBH-S SERIES (SPACER CHAIN TYPE)


RADIAL RIGIDITY

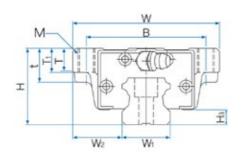
Types and Features

STANDARD AND MAXIMUM LENGTH OF A RAIL

Catego	ory	Туре		Shape & Features			
Flang	ge	RBH-F RBH-SF		Machine tool X, Y, Z axis,			
type	-	RBH-FL RBH-SFL		 Having the cross section identical to that of H-F Series, it increased load rating by extending the whole length (L1) of Linear Motion guide block A 4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied. 			
Compa	act	RBH-R RBH-SR		 With the tapped top side of a block, a compact type that the width of Linear Motion guide block is minimized A 4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied. 	EDM electric spark machine, automation device, Various transport system, FPD inspection equipment, Industrial robots, ATC, Precision X-Y table, Various industrial		
type	0	RBH-RL RBH-SRL		 Having the cross section identical to that of H-R Series, it increased load rating by extending the whole length (L1) of Linear Motion guide block A 4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied. 	machine		

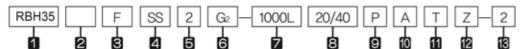
Model No.	RB15R	RB20R	RB25R	RB30R	RB35R	RB45R	RB55R	
	160	160	220	280	440	570	780	
	220	220	280	360	520	675	900	
	280	280	340	440	600	780	1020	
	-	340	400	520	680	885	-	
Standard	1360	-	460	600	760	-	2820	
length	1480	1960	-	-	-	2880	2940	
	1600	2080	2200	2520	2680	2985	3060	
		2200	2320	2680	2840	3090		
			2440	2840	3000			
				3000				
Standard pitch P	Standard pitch P 60 60 60		60	80	80	105	120	
G	20	20	20	20	20	22.5		
Max. length				4000				

STANDARD TAP HOLE TYPE OF A RAIL



Model No.	S	h(mm)
RB15T	M5	8
RB20T	M6	10
RB25T	M6	12
RB30T	M8	15
RB35T	M8	17
RB45T	M12	24
RB55T	M14	24

Unit: mm


RBH-F Series, **RBH-FL Series**

Madal	Extern	Dimensions of block												
Model No.	Height H	Width W	Length L	В	с	м	L1	t	т	T1	N	E	Grease nipple	H3
RBH15F	24	47	57	38	30	M5	40.8	-	7	11	6	6	A-M4	4.7
RBH15FL	24	47	65.3	38	30	M5	49.1	-	7	11	6	6	A-M4	4.7
RBH20F	30	63	72.7	53	40	M6	53.1	-	9.2	10	7.5	12	B-M6F	6
RBH20FL	30	63	88.6	53	40	M6	69	-	9.2	10	7.5	12	B-M6F	6
RBH25F	36	70	83	57	45	M8	58.3	-	11.5	16	9	12	B-M6F	7
RBH25FL	36	70	102.9	57	45	M8	78.2	-	11.5	16	9	12	B-M6F	7
RBH30F	42	90	97.8	72	52	M10	70.8	-	9.5	18	7.3	12	B-M6F	7.5
RBH30FL	42	90	120	72	52	M10	93	-	9.5	18	7.3	12	B-M6F	7.5
RBH35F	48	100	110	82	62	M10	80.8	-	12.5	21	8	12	B-M6F	9
RBH35FL	48	100	135.4	82	62	M10	106.2	-	12.5	21	8	12	B-M6F	9
RBH45F	60	120	139	100	80	M12	101.9	25	13	15	10	16	B-PT1/8	10
RBH45FL	60	120	170.8	100	80	M12	133.7	25	13	15	10	16	B-PT1/8	10
RBH55F	70	140	163	116	95	M14	117.5	29	19	17	11	16	B-PT1/8	13
RBH55FL	70	140	201.1	116	95	M14	155.6	29	19	17	11	16	B-PT1/8	13

Composition of Model No.

1 Model No. of Linear Motion Guide

2 Type of block: No symbol-Full-ball type / S-Spacer Chain type

3 Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type

4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper

UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF - End seal + Inside seal + metal scraper + LF seal (*1)

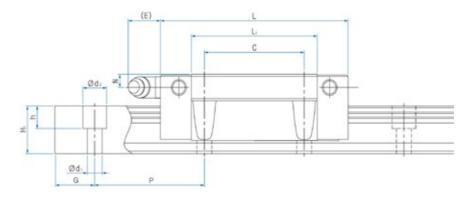
5 Number of blocks combined in 1 rail

6 Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)

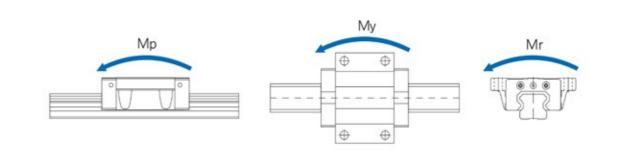
7 Length of rail

8 Size of G value: standard G value has no symbol.

9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)

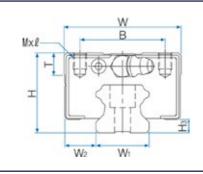

10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)

11 Connection symbol

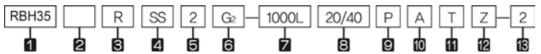

12 Special symbol

- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts
- (*3) See P45 Selection of Precision Class

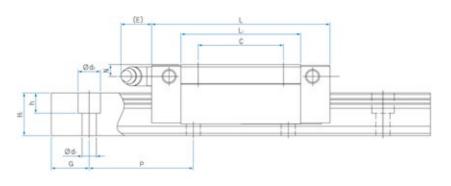
(*2) See P30 Radial Clearance (*4) See P89 Standard tap hole type of a rail

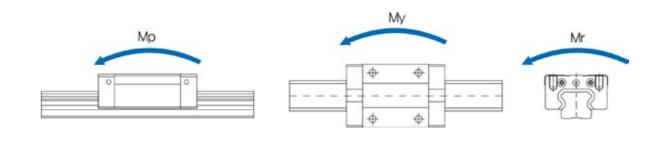

		Dimo	nsion of	f Dail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Ma	ss
		Dimer		Rail		rat	ing	٨	٨p	/	٨y	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	16	13	20	60	4.5X7.5X5.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.19	1.3
15	16	13	20	60	4.5X7.5X5.3	14.3	19.3	0.165	0.769	0.165	0.769	0.154	0.24	1.3
20	21.5	16.5	20	60	6X9.5X8.5	18.3	23.9	0.221	1.049	0.221	1.049	0.251	0.41	2.2
20	21.5	16.5	20	60	6X9.5X8.5	21.8	30.7	0.370	1.692	0.370	1.692	0.322	0.54	2.2
23	23.5	20	20	60	7X11X9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.61	3.0
23	23.5	20	20	60	7X11X9	32.8	43.6	0.596	2.760	0.596	2.760	0.525	0.82	3.0
28	31	26	20	80	9X14X12	50.4	57.1	0.711	3.384	0.711	3.384	0.828	1.1	4.85
28	31	26	20	80	9X14X12	60.3	73.6	1.203	5.506	1.203	5.506	1.067	1.3	4.85
34	33	29	20	80	9X14X12	67.0	74.6	1.062	5.012	1.062	5.012	1.298	1.6	6.58
34	33	29	20	80	9X14X12	80.2	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	37.5	38	22.5	105	14X20X17	108.5	116.4	2.860	9.912	2.860	9.912	2.275	2.83	11.03
45	37.5	38	22.5	105	14X20X17	129.7	150.1	4.533	16.161	4.533	16.161	2.935	3.70	11.03
53	43.5	44	30	120	16X23X20	155.9	161.5	4.654	16.016	4.654	16.016	3.779	4.36	15.26
53	43.5	44	30	120	16X23X20	187.5	210.1	7.468	26.493	7.468	26.493	4.916	5.76	15.26

Unit: mm


RBH-R Series, **RBH-RL Series**

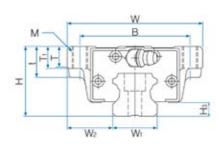
Model	Exter	nal dimer	nsions			Diı	mensions	of bloc	k			
No.	Height H	Width W	Length L	В	С	M x "	L1	т	N	E	Grease nipple	H3
RBH15R	28	34	57	26	26	M4X5	40.8	6	10	6	A-M4	4.7
RBH15RL	28	34	65.3	26	26	M4X5	49.1	6	10	6	A-M4	4.7
RBH20R	30	44	72.7	32	36	M5X6	53.1	8	7.5	12	B-M6F	6
RBH20RL	30	44	88.6	32	50	M5X6	69	8	7.5	12	B-M6F	6
RBH25R	40	48	83	35	35	M6X8	58.3	8	13	12	B-M6F	7
RBH25RL	40	48	102.9	35	50	M6X8	78.2	8	13	12	B-M6F	7
RBH30R	45	60	97.8	40	40	M8X10	70.8	8	10.3	12	B-M6F	7.5
RBH30RL	45	60	120	40	60	M8X10	93	8	10.3	12	B-M6F	7.5
RBH35R	55	70	110	50	50	M8X12	80.8	10	15	12	B-M6F	9
RBH35RL	55	70	135.4	50	72	M8X12	106.2	10	15	12	B-M6F	9
RBH45R	70	86	139	60	60	M10X17	101.9	15	20	16	B-PT1/8	10
RBH45RL	70	86	170.8	60	80	M10X17	133.7	15	20	16	B-PT1/8	10
RBH55R	80	100	163	75	75	M12X18	117.5	18	21	16	B-PT1/8	13
RBH55RL	80	100	201.1	75	95	M12X18	155.6	18	21	16	B-PT1/8	13


Composition of Model No.

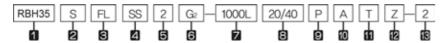

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
- UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
- **5** Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)

10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)

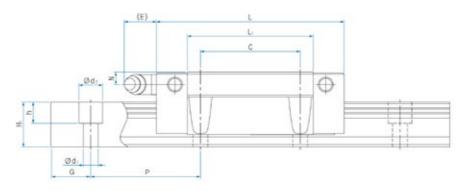
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts
- (*3) See P45 Selection of Precision Class
- (*2) See P30 Radial Clearance (*4) See P89 Standard tap hole type of a rail

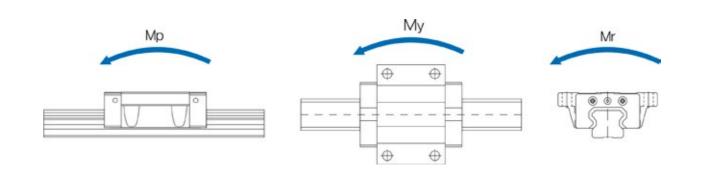

		Dimo	nsion of	f Dail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Ma	SS
		Dimer		ΓΚάιι		rat	ing	٨	٨p	1	٨y	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	9.5	13	20	60	4.5X7.5X5.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.18	1.3
15	9.5	13	20	60	4.5X7.5X5.3	14.3	19.3	0.165	0.769	0.165	0.769	0.154	0.23	1.3
20	12	16.5	20	60	6X9.5X8.5	18.3	23.9	0.221	1.049	0.221	1.049	0.251	0.31	2.2
20	12	16.5	20	60	6X9.5X8.5	21.8	30.7	0.370	1.692	0.370	1.692	0.322	0.41	2.2
23	12.5	20	20	60	7X11X9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
23	12.5	20	20	60	7X11X9	32.8	43.6	0.596	2.760	0.596	2.760	0.525	0.71	3.0
28	16	26	20	80	9X14X12	50.4	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85
28	16	26	20	80	9X14X12	60.3	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.85
34	18	29	20	80	9X14X12	67.0	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6.58
34	18	29	20	80	9X14X12	80.2	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	20.5	38	22.5	105	14X20X17	108.5	116.4	2.860	9.912	2.860	9.912	2.275	2.89	11.03
45	20.5	38	22.5	105	14X20X17	129.7	150.1	4.533	16.161	4.533	16.161	2.935	3.74	11.03
53	23.5	44	30	120	16X23X20	155.9	161.5	4.654	16.016	4.654	16.016	3.779	4.28	15.26
53	23.5	44	30	120	16X23X20	187.5	210.1	7.468	26.493	7.468	26.493	4.916	5.59	15.26

Unit: mm


RBH-SF Series, **RBH-SFL Series**

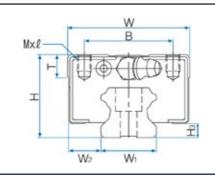
Model	Exter	nal dime	nsions				Dir	nensio	ons of b	lock				
No.	Height H	Width W	Length L	В	с	м	L1	t	т	T1	N	E	Grease nipple	H3
RBH15SF	24	47	57	38	30	M5	40.7	-	7	11	6	6	A-M4	4.7
RBH15SFL	24	47	65.3	38	30	M5	49.1	-	7	11	6	6	A-M4	4.7
RBH20SF	30	63	72.7	53	40	M6	53.1	-	9.2	10	7.5	12	B-M6F	6
RBH20SFL	30	63	88.6	53	40	M6	69	-	9.2	10	7.5	12	B-M6F	6
RBH25SF	36	70	83	57	45	M8	58.3	-	11.5	16	9	12	B-M6F	7
RBH25SFL	36	70	102.9	57	45	M8	78.2	-	11.5	16	9	12	B-M6F	7
RBH30SF	42	90	97.8	72	52	M10	70.8	-	9.5	18	7.3	12	B-M6F	7.5
RBH30SFL	42	90	120	72	52	M10	93	-	9.5	18	7.3	12	B-M6F	7.5
RBH35SF	48	100	110	82	62	M10	80.8	-	12.5	21	8	12	B-M6F	9
RBH35SFL	48	100	135.4	82	62	M10	106.2	-	12.5	21	8	12	B-M6F	9
RBH45SF	60	120	138.5	100	80	M12	106	25	13	18	10.5	13	B-PT1/8	10
RBH45SFL	60	120	170.2	100	80	M12	137.8	25	13	18	10.5	13	B-PT1/8	10
RBH55SF	70	140	171	116	95	M14	132.6	29	19	21	11	13	B-PT1/8	13
RBH55SFL	70	140	210.6	116	95	M14	172.2	29	19	21	11	13	B-PT1/8	13


Composition of Model No.

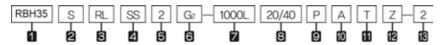

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
- UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
- **5** Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- **8** Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)

10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)

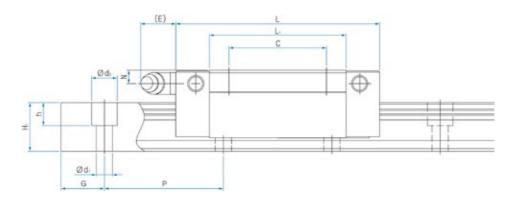
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts
- (*3) See P45 Selection of Precision Class
- (*2) See P30 Radial Clearance (*4) See P89 Standard tap hole type of a rail

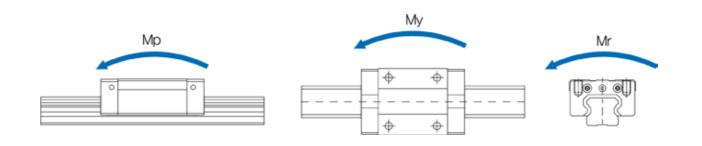

		Dimo	nsion of	EDail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Ma	SS
		Dimer		Rail		rat	ing	٨	٨p	/	٨y	Mr		
Width W1 ± 0.05	W2	heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	16	13	20	60	4.5X7.5X5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.19	1.3
15	16	13	20	60	4.5X7.5X5.3	13.7	19.3	0.165	0.769	0.165	0.769	0.154	0.24	1.3
20	21.5	16.5	20	60	6X9.5X8.5	17.6	23.9	0.221	1.049	0.221	1.049	0.251	0.41	2.2
20	21.5	16.5	20	60	6X9.5X8.5	21.1	30.7	0.370	1.692	0.370	1.692	0.322	0.54	2.2
23	23.5	20	20	60	7X11X9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.61	3.0
23	23.5	20	20	60	7X11X9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.82	3.0
28	31	26	20	80	9X14X12	48	57.1	0.711	3.384	0.711	3.384	0.828	1.1	4.85
28	31	26	20	80	9X14X12	58	73.6	1.203	5.506	1.203	5.506	1.067	1.3	4.85
34	33	29	20	80	9X14X12	63.7	74.6	1.062	5.012	1.062	5.012	1.298	1.6	6.58
34	33	29	20	80	9X14X12	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	37.5	32	22.5	105	14X20X17	82.9	95.5	1.789	8.251	1.789	8.251	1.992	3.15	9.75
45	37.5	32	22.5	105	14X20X17	99.7	122.5	2.984	13.341	2.984	13.341	2.556	4.07	9.75
53	43.5	38	30	120	16X23X20	133.5	149.2	3.495	16.007	3.495	16.007	3.608	5.30	13.75
53	43.5	38	30	120	16X23X20	160.4	191.4	5.826	25.899	5.826	25.899	4.627	6.84	13.75

Unit: mm


RBH-SR Series, **RBH-SRL Series**

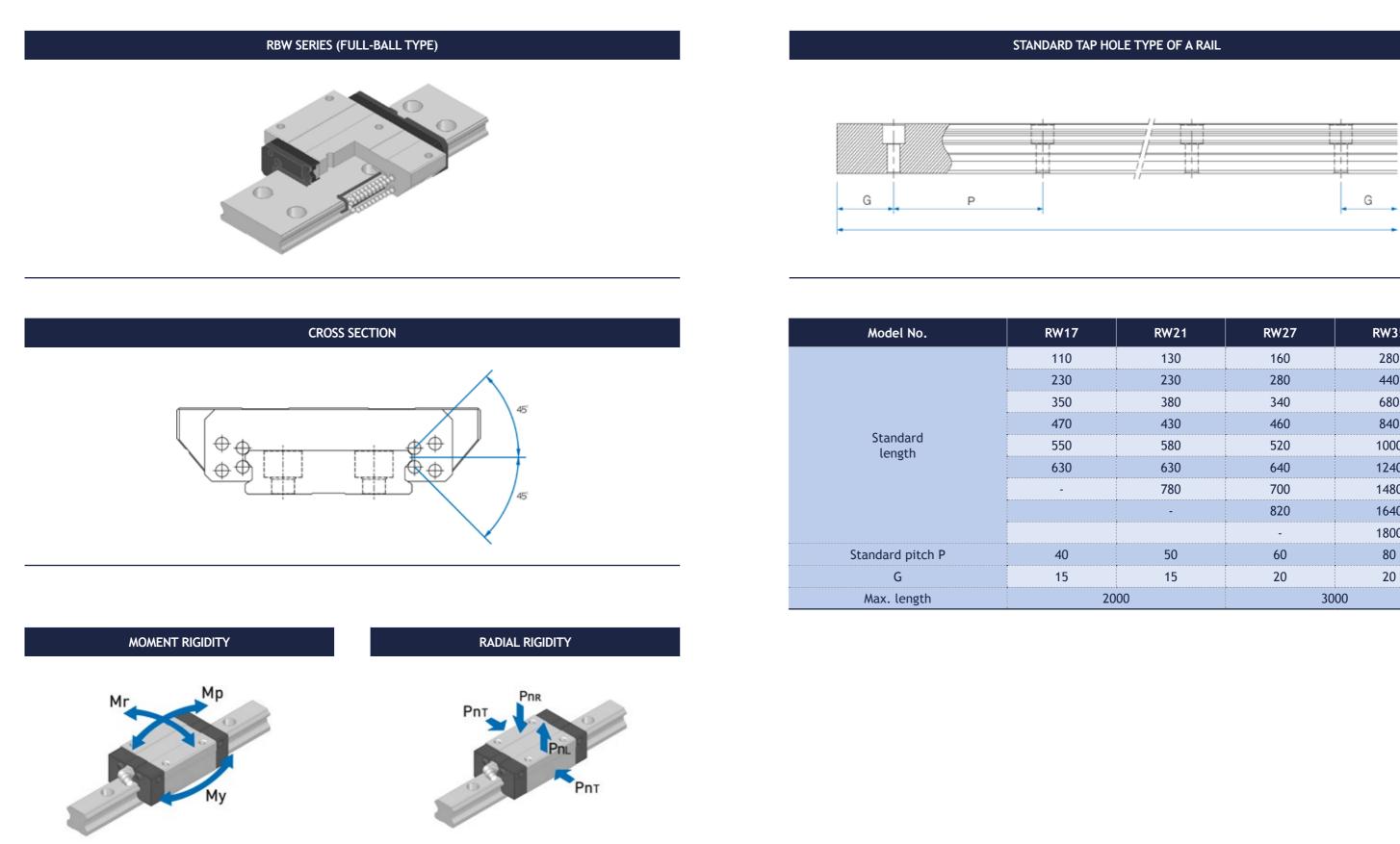
Model	Exter	nal dimer	nsions			Di	mensior	ns of bl	ock			
No.	Height H	Width W	Length L	В	с	Mxl	L1	т	N	E	Grease nipple	Нз
RBH15SR	28	34	57	26	26	M4x5	40.7	6	10	6	A-M4	4.7
RBH15SRL	28	34	65.3	26	26	M4x5	49.1	6	10	6	A-M4	4.7
RBH20SR	30	44	72.7	32	36	M5x6	53.1	8	7.5	12	B-M6F	6
RBH20SRL	30	44	88.6	32	50	M5x6	69	8	7.5	12	B-M6F	6
RBH25SR	40	48	83	35	35	M6x8	58.3	8	13	12	B-M6F	7
RBH25SRL	40	48	102.9	35	50	M6x8	78.2	8	13	12	B-M6F	7
RBH30SR	45	60	97.8	40	40	M8x10	70.8	8	10.3	12	B-M6F	7.5
RBH30SRL	45	60	120	40	60	M8x10	93	8	10.3	12	B-M6F	7.5
RBH35SR	55	70	110	50	50	M8x12	80.8	10	15	12	B-M6F	9
RBH35SRL	55	70	135.4	50	72	M8x12	106.2	10	15	12	B-M6F	9
RBH45SR	70	86	138.5	60	60	M10x17	106	15	20.5	13	B-PT1/8	10
RBH45SRL	70	86	170.2	60	80	M10x17	137.8	15	20.5	13	B-PT1/8	10
RBH55SR	80	100	171	75	75	M12x18	132.6	20	21	13	B-PT1/8	13
RBH55SRL	80	100	210.6	75	95	M12x18	172.2	20	21	13	B-PT1/8	13


Composition of Model No.


- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
 - UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
- **5** Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)

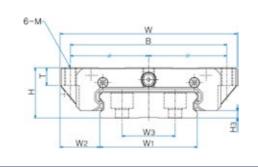
10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)

- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts
- (*3) See P45 Selection of Precision Class
- (*2) See P30 Radial Clearance (*4) See P89 Standard tap hole type of a rail

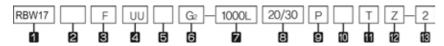


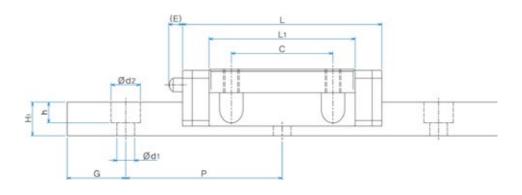
		Dimo	nsion of	f Dail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Ma	SS
		Dimer		ΓΚάιι		rat	ing	٨	٨p	/	٨y	Mr		
Width W1 ± 0.05	W2	heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	9.5	13	20	60	4.5X7.5X5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.18	1.3
15	9.5	13	20	60	4.5X7.5X5.3	13.7	19.3	0.165	0.769	0.165	0.769	0.154	0.23	1.3
20	12	16.5	20	60	6X9.5X8.5	17.6	23.9	0.221	1.049	0.221	1.049	0.251	0.31	2.2
20	12	16.5	20	60	6X9.5X8.5	21.1	30.7	0.370	1.692	0.370	1.692	0.322	0.41	2.2
23	12.5	20	20	60	7X11X9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
23	12.5	20	20	60	7X11X9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.71	3.0
28	16	26	20	80	9X14X12	48	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85
28	16	26	20	80	9X14X12	58	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.85
34	18	29	20	80	9X14X12	63.7	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6.58
34	18	29	20	80	9X14X12	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	20.5	32	22.5	105	14X20X17	82.9	95.5	1.789	8.251	1.789	8.251	1.992	3.20	9.75
45	20.5	32	22.5	105	14X20X17	99.7	122.5	2.984	13.341	2.984	13.341	2.556	4.10	9.75
53	23.5	38	30	120	16X23X20	133.5	149.2	3.495	16.007	3.495	16.007	3.608	5.16	13.75
53	23.5	38	30	120	16X23X20	160.4	191.4	5.826	25.899	5.826	25.899	4.627	6.61	13.75

Unit: mm


Wide Linear Motion Guide RBW Series

RW21	RW27	RW35
130	160	280
230	280	440
380	340	680
430	460	840
580	520	1000
630	640	1240
780	700	1480
-	820	1640
	-	1800
50	60	80
15	20	20
0	30	00

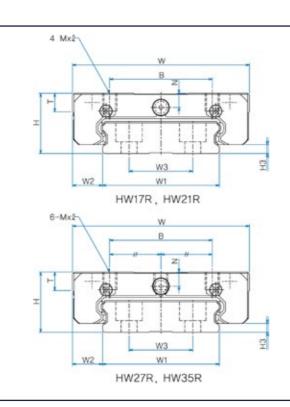

RBW-F Series

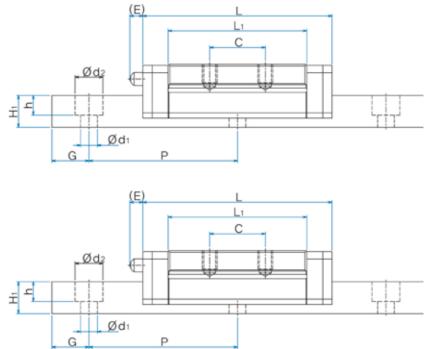

Model	Exter	nal dimer	nsions			Di	mensior	ns of blo	ock			
No.	Height H	Width W	Length L	В	с	Mxł	L1	т	N	E	Grease nipple	H3
RBW17F	17	60	51	53	26	M4	37.4	6	4	3.5	A-Ø3	2.5
RBW21F	21	68	59	60	29	M5	45.4	8	5	3.5	A-Ø3	3.3
RWB27F	27	80	72.5	70	40	M6	54.7	10	6	10.3	B-M6F	3.5
RBW35F	35	120	105.3	107	60	M8	82.1	14	7.6	10.3	B-M6F	4

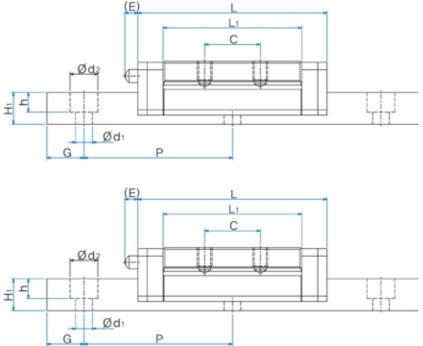
Composition of Model No.

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type
- 3 Form of block: R-Rectangular standard type / F-Flange standard type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper (*1)
- 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts (*3) See P45 Selection of Precision Class

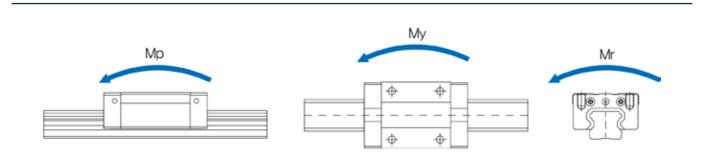
(*2) See P30 Radial Clearance

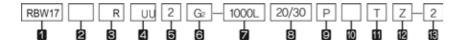

		D	vimensi	ion of I	Dail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Mas	SS
		U	intensi		ναιι		rat	ing	^	٨p	/	٨y	Mr		
Width W1 ± 0.05	W2	W3	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
33	8.5	18	8.6	15	40	4.5x7.5x5.3	7.3	12.2	0.081	0.381	0.081	0.381	0.205	0.15	1.9
37	8.5	22	11	15	50	4.5x7.5x5.3	8.4	14.8	0.119	0.547	0.119	0.547	0.278	0.24	2.9
42	10	24	15	20	60	4.5x7.5x5.3	15.3	24.8	0.239	1.114	0.239	1.114	0.527	0.47	4.5
69	15.5	40	19	20	80	7x11x9	33.9	53.2	0.773	3.528	0.773	3.528	1.851	1.40	9.6




Unit: mm

RBW-R Series





			Dimons	ion of T	Dail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Ma	ISS
			Dimens	ion of F	all		rat	ing	/	٨p	/	٨y	Mr		
Width W1 ± 0.05	W2	W3	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
33	8.5	18	8.6	15	40	4.5x7.5x5.3	7.3	12.2	0.081	0.381	0.081	0.381	0.205	0.13	1.9
37	8.5	22	11	15	50	4.5x7.5x5.3	8.4	14.8	0.119	0.547	0.119	0.547	0.278	0.19	2.9
42	10	24	15	20	60	4.5x7.5x5.3	15.3	24.8	0.239	1.114	0.239	1.114	0.527	0.36	4.5
69	15.5	40	19	20	80	7x11x9	33.9	53.2	0.773	3.528	0.773	3.528	1.851	1.20	9.6

Model	Exter	nal dimei	nsions			Di	mensio	ns of blo	ock			
No.	Height H	Width W	Length L	В	с	Mxl	L1	т	N	E	Grease nipple	Нз
RBW17R	17	50	51	29	15	M4x5	37.4	5.2	4	3.5	A-Ø3	2.5
RBW21R	21	54	59	31	19	M5x6	45.4	8	5	3.5	A-Ø3	3.3
RBW27R	27	62	72.5	46	32	M6x6	54.7	10	6	10.3	B-M6F	3.5
RBW35R	35	100	105.3	76	50	M8x8	82.1	14	7.6	10.3	B-M6F	4

Composition of Model No.

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type
- 3 Form of block: **R**-Rectangular standard type / **F**-Flange standard type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper (*1)
- **5** Number of blocks combined in 1 rail
- 6 Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- **10 No symbol**-Rail counter bore type (A topside assembly)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts
- (*2) See P30 Radial Clearance
- (*3) See P45 Selection of Precision Class

Unit: mm

3. Slim Linear Motion Guide RBS Series

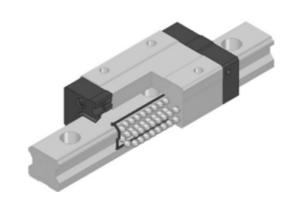
1) Structure of RBS Series

Linear Motion Guide S Series has a four-row circular arc-groove structure and is a 4-direction equal load type. It also has an auto-adjusting face-to-face D/F structure. It uses balls as a rolling element and is a slim-type guide with a low sectional height as well as high rigidity and less noise.

2) Features of S Series

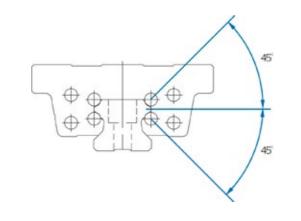
- a. High quality and very effective in realizing high precision and elimination of labor
- b. High rigidity and high precision which can realize the stable travel for a long time
- c. Great wear resistance and friction resistance which ensures a long life
- d. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- e. Various specifications for easy design
- f. Easy to use due to great compatibility between a rail and a block
- g. 4-direction equal load and high-rigidity structure
- h. Slim shape suitable for horizontal motion to ensure stable running

4. Slim Spacer Chain Linear Motion Guide RBS-S Series

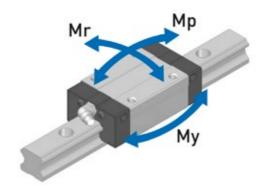

1) Structure of RBS-S Series

Linear Motion Guide RBS-S Series has a 4-direction equal load type which is identical to S Series and has an auto-adjusting face-to-face D/F structure. It uses balls as a rolling element and combines a spacer between balls to prevent them from colliding each other during the rolling motion.

Therefore it makes less noise and more stable circulating motion than a full-ball type to realize quiet running even in high velocity movement and the spacer act as the pocket of lubricant to obtain longer life than H Series.

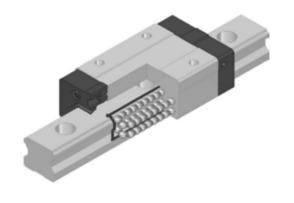

2) Features of RBS-S Series

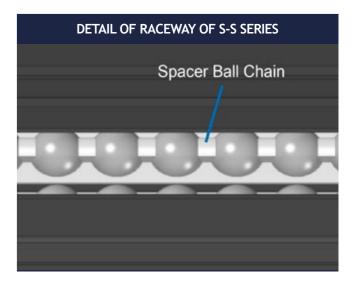
- a. As a spacer-incorporated type which improves frictional properties and prevents the collision of balls, it not only allows stable circulating motion and smooth running but also reduces noise. If special lubricating seal is attached to lengthen life, maintenance-free operations can be achieved.
- b. Collision between balls and the loss of oil film are prevented by applying a resin spacer to improve life and generate less particles and dust.
- c. High quality in realizing high precision and high velocity so it could create large effect on elimination of power loss.
- d. High rigidity and high precision which can realize the stable travel for a long time
- e. Great wear resistance and friction resistance which ensures a long life
- f. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- g. Various specifications for easy design
- h. Easy to use due to great compatibility between a rail and a block

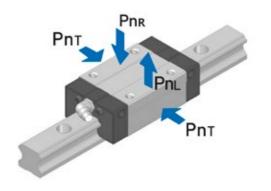


S SERIES (FULL-BALL TYPE)

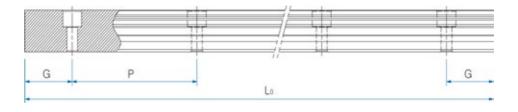
CROSS SECTION



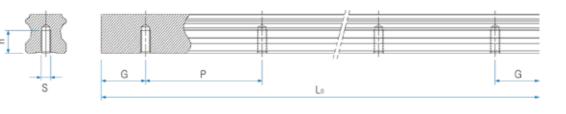

MOMENT RIGIDITY



S-S SERIES (SPACER CHAIN TYPE)


RADIAL RIGIDITY

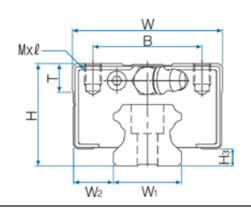
Types and Features


Category	Туре		Shape & Features	
Compact	RBS-C RBS-SC		 With the tapped flange of a block, a slim compact that the width and length of Linear Motion guide block is minimized A 4-direction equal load type with 45° contact angle S Series is a low-noise lowdust raise type with improved life due to zero friction between balls since a spacer chain is applied. 	
type	RBS-R RBS-SR		 Having the cross section identical to that of S-C Series, a slim compact type that the width and length of Linear Motion guide block is minimized A 4-direction equal load type with 45° contact angle S Series is a low-noise lowdust raise type with improved life due to zero friction between balls since a spacer chain is applied. 	Cartesian coordinated robot, linear actuator, automation system, semiconductor/display manufacturing system, LED inspection equipment, dispenser equipment, medical Equipment
Flange	RBS-CF RBS-SCF	0	 With the tapped flange of a block, a slim compact type that the width and length of Linear Motion guide block is minimized A 4-direction equal load type with 45° contact angle S Series is a low-noise lowdust raise type with improved life due to zero friction between balls since a spacer chain is applied. 	medical Equipment, high-speed transport system, woodworking machine, take-out robots, small machine tool, laser processor, precision measurement equipment
type	RBS-F RBS-SF		 Having the cross section identical to that of S-CF Series, a slim compact type that the width and length of Linear Motion guide block is minimized A 4-direction equal load type with 45° contact angle S Series is a low-noise lowdust raise type with improved life due to zero friction between balls since a spacer chain is applied. 	

STANDARD TAP HOLE TYPE OF A RAIL

Model No.	RB15R	RB20R	RB25R
	160	160	220
	220	220	280
	280	280	340
	-	340	400
Standard length	1360	-	460
tengai	1480	1960	-
	1600	2080	2200
		2200	2320
			2440
Standard pitch P	60	60	60
G	20	20	20
Max. length		4000	

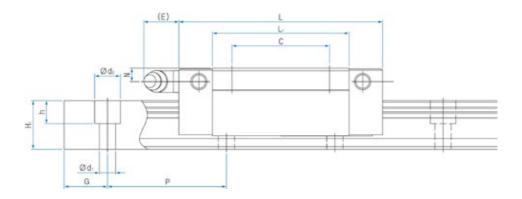
STANDARD TAP HOLE TYPE OF A RAIL


Model No.	S	h(mm)
RB15T	M5	8
RB20T	M6	10
RB25T	M6	12

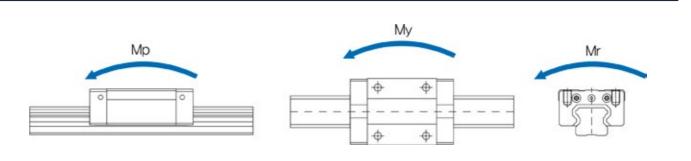
Unit: mm

Unit: mm

RBS-C Series, **RBS-R Series**

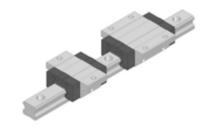


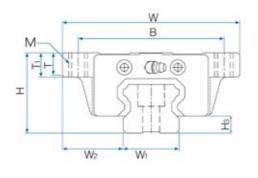
Model	Exter	nal dime	nsions			Di	mensior	ns of blo	ock			
No.	Height H	Width W	Length L	В	с	Mxl	L1	т	N	E	Grease nipple	Нз
RBS15C	24	24	40.2	24	-	MAX	24	4	4	4		4 5
RBS15R	24	34	56.9	26	26	M4x6	40.7	6	6	6	A-M4	4.5
RBS20C	20	42	47.2	32	-		27.6	7 5	ББ	12		4
RBS20R	28	42	66.3	32	32	M5x7	46.7	7.5	5.5	١Z	B-M6F	6
RBS25C	33	48	59.1	25	-		34.4	0	6	12	B-M6F	7
RBS25R	33	40	83	35 35		35 M6x9		58.2 8		١Z	D-1/\(OF	/

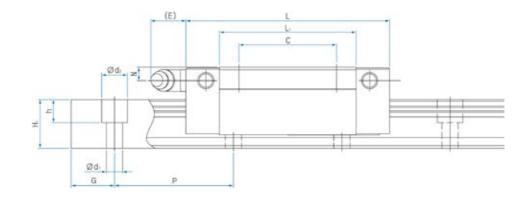

Composition of Model No.

RBS15		С	SS	2	G2 -	- 1000L	20/40	Ρ	Α	Т	Z	2
a	2	8	4	5	6	7	8	9	10	60	12	13

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block: C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
- UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface (*3) See P45 Selection of Precision Class
- (*1) See P139 Symbol List of Optional Parts (*2) See P30 Radial Clearance
 - (*4) See P107 Standard tap hole type of a rail

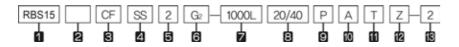



		Dimo	nsion of	f Dail		Basic	load	Stat	ic allowa	ance m	oment k	N-m	Ma	SS
		Dimer		ΓΚάιι		rat	ing	٨	٨p	/	Мy	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	9.5	13	20	60	4.5x7.5x5.3	9.0	10.0	0.042	0.224	0.042	0.224	0.079	0.096	1.3
IJ	9.5	13	20	00	4.3X7.3X3.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.156	1.5
20	44	47 E	20	(0	(12.0	13.1	0.063	0.342	0.063	0.342	0.137	0.153	~ ~
20	11	16.5	20	60	6x9.5x8.5	16.8	21.2	0.173	0.838	0.173	0.838	0.223	0.246	2.2
าา	40 E	20	20	(0	7110	19.2	20.4	0.123	0.670	0.123	0.670	0.246	0.254	2.0
23	12.5	20	20	60	7x11x9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.413	3.0



Unit: mm

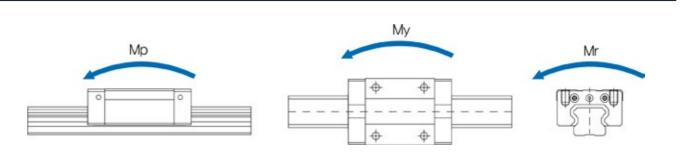
RBS-CF Series, **RBS-F Series**



		Dimo	nsion of	f Dail		Basic	load	Stat	ic allow:	ance m	oment k	N-m	Ma	SS
		Dimer		ΓΚάιι		rat	ing	^	٨p	1	Мy	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	18.5	13	20	60	4.5x7.5x5.3	9.0	10.0	0.042	0.224	0.042	0.224	0.079	0.125	1.3
15	10.5	IJ	20	00	4.3X7.3X3.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.203	1.3
20	10 E	47 E	20	(0	(12.0	13.1	0.063	0.342	0.063	0.342	0.137	0.187	~ ~
20	19.5	16.5	20	60	6x9.5x8.5	16.8	21.2	0.173	0.838	0.173	0.838	0.223	0.301	2.2
22	Э Е	20	20	<i>(</i> 0	7110	19.2	20.4	0.123	0.670	0.123	0.670	0.246	0.320	2.0
23	25	20	20	60	7x11x9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.527	3.0

Model	Exter	nal dimer	nsions		Dimensions of block									
No.	Height H	Width W	Length L	В	с	м	L1	т	T1	N	E	Grease nipple	H3	
RBS15CF	24	52	40.2	41	-	44E	24	4	7	4	4	A AA A	4 5	
RBS15F	24	52	56.9	41	26	M5	40.7	6	1	6	6	A-M4	4.5	
RBS20CF	າດ	59	47.2	49	-	***	27.6	8	9	5.5	12		6	
RBS20F	28	39	66.3	49	32	M6	46.7	0	9	5.5	١Z	B-M6F	0	
RBS25CF	33	73	59.1	60	-	***	34.4	0	10	6	12	B-M6F	7	
RBS25F	33	13	83	00	35	M8	58.2	9 10	10	0	١Z	D-1/\0F	7	

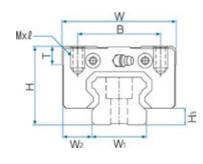
Composition of Model No.


- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block : C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
- UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)

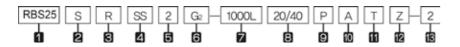
(*1) See P139 Symbol List of Optional Parts

- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface (*3) See P45 Selection of Precision Class

(*2) See P30 Radial Clearance

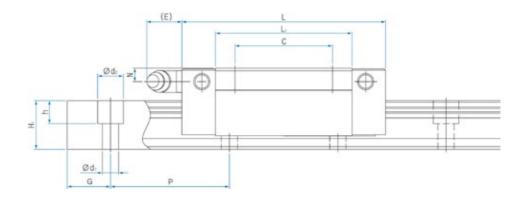

(*4) See P107 Standard tap hole type of a rail

Unit: mm

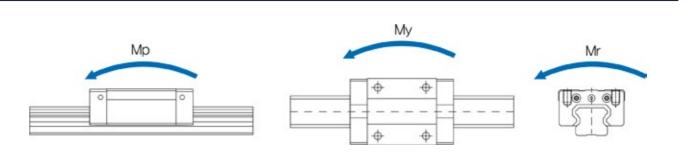

RBS-SC Series, **RBS-SR Series**

Model	Exter	nal dimer	nsions			Dime	ensions	of bl	ock								
No. Heig H RBS15SC	Height H	Width W	Length L	В	с	Mxl	L1	т	N	E	Grease nipple	H3					
RBS15SC	24	24	40.2	26	-	M4x6	24	4	۷	۷		4 5					
RBS15SR	24	34	54	34	54	34	54	56.9	20 26	26	///1/10	40.7	6	6	6	A-M4	4.5
RBS20SC	70	28	0SC 28	42	47.2	2 -	M5v7	27.6	75	E E	12	B-M6F	4				
RBS20SR	28	42	47.2 - 66.3 32 32	M5x7	46.7	7.5	5.5	١Z	D-1/\(0F	6							
RBS25SC	33	40	59.1	35	-	M620	34.4	8	6	12		7					
RBS25SR	33	33	33	48	83	20	35	M6x9	58.3	0	0	١Z	B-M6F	1			

Composition of Model No.

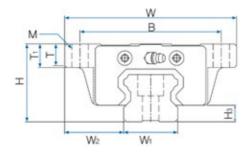


- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block : C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
- UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)


(*1) See P139 Symbol List of Optional Parts

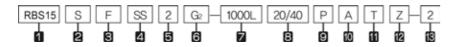
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface (*3) See P45 Selection of Precision Class
- (*2) See P30 Radial Clearance
 - (*4) See P107 Standard tap hole type of a rail

Types of Linear Motion Guide

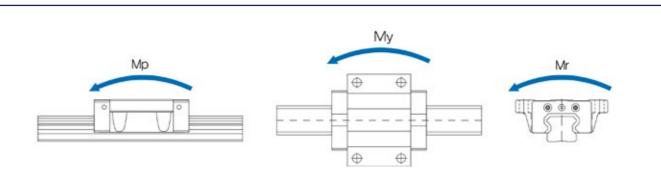

		Dimo	nsion o	f Dail		Basic	load	Stat	ic allow:	ance m	oment k	N-m	Ma	SS
		Dime		i Kall		rat	ing	Мр		/	٨y	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	9.5	13	20	60	4.5x7.5x5.3	8.3	10.0	0.042	0.224	0.042	0.224	0.079	0.096	1.3
IJ	9.5	13	20	00	4.3X7.3X3.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.156	1.5
20	44	47 E	20	(0	(11.1	13.1	0.063	0.342	0.063	0.342	0.137	0.153	~ ~
20	11	16.5	20	60	6x9.5x8.5	16.1	21.2	0.173	0.838	0.173	0.838	0.223	0.246	2.2
22	40 E	20	20	(0	7110	17.9	20.4	0.123	0.670	0.123	0.670	0.246	0.254	2.0
23	12.5	20	20	60	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.413	3.0

Unit: mm

RBS-SCF Series, **RBS-SF Series**

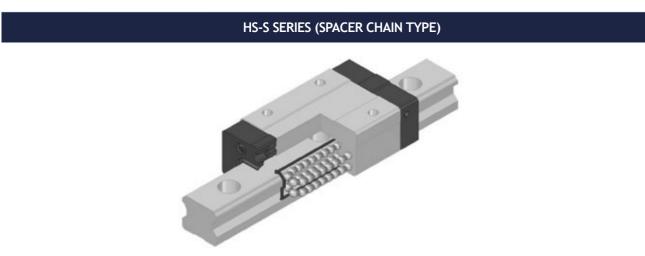


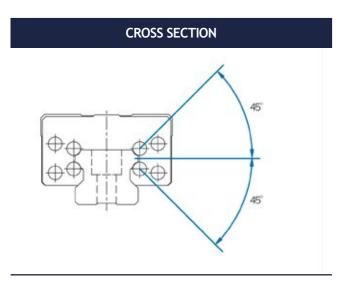
		1	(E)		
					•
	-0	di z	M	Φ	
4				Ψ	17
ź É		$\frac{1}{2}$			Ni
		il t	· · ·		ЧĮ.
	Ød, G				
	G		P		

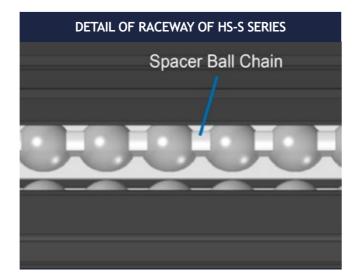

		Dimo	nsion of	f Dail		Basic	load	Stat	ic allowa	ance m	oment k	N-m	Ma	SS
		Dimer		i Kall		rat	rating Mp		٨p		Мy	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
15	9.5	13	20	60	4.5x7.5x5.3	8.3	10.0	0.042	0.224	0.042	0.224	0.079	0.125	1.3
15	9.5	IJ	20	00	4.3X7.3X3.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.203	1.5
20	44	44 5	20	(0)	(O. FO. F.	11.1	13.1	0.063	0.342	0.063	0.342	0.137	0.187	.
20	11	16.5	20	60	6x9.5x8.5	16.1	21.2	0.173	0.838	0.173	0.838	0.223	0.301	2.2
22	12.5	20	20	(0	7110	17.9	20.4	0.123	0.670	0.123	0.670	0.246	0.320	2.0
23	12.5	20	20	60	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.527	3.0

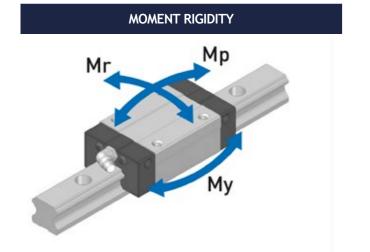

Model	Exter	nal dime	nsions		Dimensions of block										
No.	Height H	Width W	Length L	В	с	м	L1	т	T 1	N	E	Grease nipple	H3		
RBS 15SCF	24	52	40.2	41	-	44E	24	4	7	6	4	A-M4	4 6		
RBS 15SF	24	52	56.9	41	26	M5	40.7	6	1	0	6	A-///4	4.5		
RBS 20SCF	28	59	47.2	49	-	M6	27.6	8	9	5.5	12	B-M6F	6		
RBS 20SF	20	39	66.3	49	32	INIO	46.7	0	9	5.5	12	D-MOF	0		
RBS 25SCF	33	72	59.1	60	-	***	34.4	9	10	6	12	B-M6F	7		
RBS 25SF	33	73	83	60	35 M8	58.3	9	10	0	١Z	D-WOL	7			

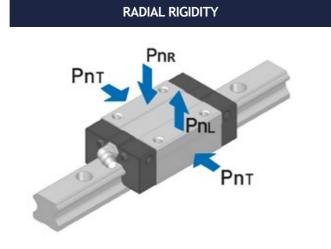
Composition of Model No.

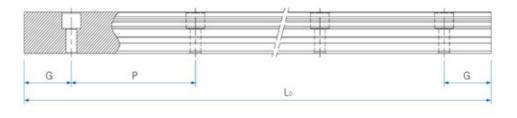

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block : C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper
- UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
- **5** Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- **8** Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface (*3) See P45 Selection of Precision Class
- (*1) See P139 Symbol List of Optional Parts (*2) See P30 Radial Clearance
 - (*4) See P107 Standard tap hole type of a rail

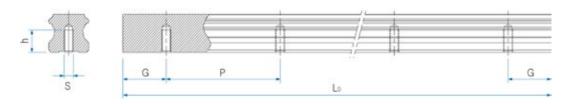





Unit: mm


Slim Spacer Chain Linear Motion Guide RBHS-S Series

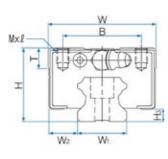




STANDARD AND MAXIMUM LENGTH OF A RAIL

Model No.	RB25R	RB30S	RB35S	RB45R	RB55R
	220	280	440	570	780
	340	360	520	675	900
	400	440	600	780	1020
	-	520	760	885	-
Standard length	2200	-	840	-	2820
Cigui	2320	2520	-	2880	2940
	2440	2680	2840	2985	3060
		2840	2920	3090	
			3000		
Standard pitch P	60	80	80	10.5	120
G	20	20	20	22.5	30
Max. length		-	4000	-	-

STANDARD TAP HOLE TYPE OF A RAIL



Model No.	S	h(mm)
RB25T	M6	12
RB30T	M8	15
RB35T	M8	17
RB45T	M12	24
RB55T	M14	24

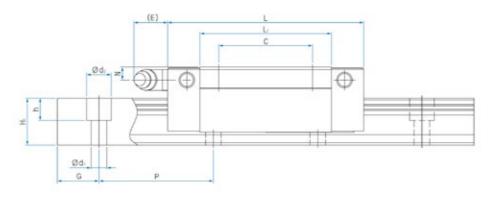
Unit: mm

RBHS-SR Series, RBHS-SRL Series

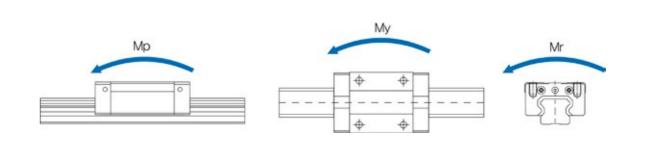
Model	Exter	nal dime	nsions			Di	mensior	ns of blo	ock			
No.	Height H	Width W	Length L	В	С	Mxl	L1	т	N	E	Grease nipple	Нз
RBHS 25SR	36	48	83	35	35		58.3	8	9	12		7
RBHS 25SRL	30	40	102.9	30	50	M6x6.5	78.2	0	9	١Z	B-M6F	/
RBHS 30SR	42	60	97.8	40	40	M8x8	70.8	8	7.8	12	B-M6F	7
RBHS 30SRL	42	00	120	40	60	Ινιοχο	93	0	7.0	12	D-MOF	/
RBHS 35SR	48	70	110	50	50	M8v10	80.8	15	10	12	B-M6F	7.5
RBHS 35SRL	40	70	135.4	50	72	M8x10	106.2	15	10	12	D-MOF	7.5
RBHS 45SR	60	86	138.5	60	60	M10x15	106	15	10.5	13	B-PT1/8	10
RBHS 45SRL	60	86	170.2	00	80	MIUXIJ	137.8	IJ	10.5	13	D-F1170	10
RBHS 55SR	70	100	171	75	75	M12x15	132.6	20	11	13	B-PT1/8	13
RBHS 55SRL	70	100	210.6	75	95	MIZAIJ	172.2	20 11	11	15	D-F11/0	15

Composition of Model No.

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block: R-Rectangular standard type / RL-Rectangular long type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper


UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF - End seal + Inside seal + metal scraper + LF seal (*1) 5 Number of blocks combined in 1 rail

- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- **8** Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)


11 Connection symbol

- 12 Special symbol
- (*1) See P139 Symbol List of Optional Parts 13 Number of axis used on the same surface (*3) See P45 Selection of Precision Class

(*2) See P30 Radial Clearance (*4) See P117 Standard tap hole type of a rail

		Dimo	nsion of	f Dail		Basic	load	Stat	ic allow	ance m	oment k	N-m	Ma	ss
		Dimer		ΓΚάιι		rat	ing	/	٨p		Му	Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
23	12.5	20	20	60	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
23	12.5	20	20	00	/ X I I X 9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.71	5.0
20	17	2E 4	20	00	0.14.14.1	48.0	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4 OE
28	16	25.1	20	80	9x14x14.1	58.0	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.85
24	40	27	20	00	0.14.12	63.7	74.6	1.062	5.012	1.062	5.012	1.298	1.5	4 50
34	18	27	20	80	9x14x13	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	20 F	22		405	44.20.47	82.9	95.5	1.789	8.251	1.789	8.251	1.992	2.49	0.75
45	20.5	32	22.5	105	14x20x17	99.7	122.5	2.984	13.341	2.984	13.341	2.556	3.18	9.75
ΕĴ		20	20	120	1(222220	133.5	149.2	3.495	16.007	3.495	16.007	3.608	4.15	40.75
53	23.5	38	30	120	16x23x20	160.4	191.4	5.826	25.899	5.826	25.899	4.627	5.29	13.75

Unit: mm

5. Miniature Linear Motion Guide RM Series

1) Structure of RM Series

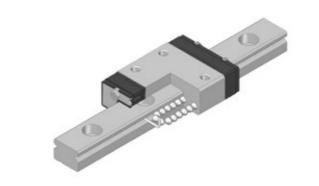
RBX Miniature Linear Motion Guide RM Series has a shape of a gothic-arch groove in the raceway between a rail and a block and a 4-direction equal type structure with 2-row 4-point contact balls at 45 degrees. Even though it is small in size, it provides stable travel and rigidity under the environment where variable load and combined load is applied.

2) Features of RM Series

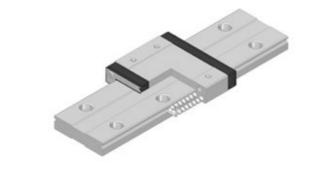
- a. A compact highly-rigid 4-direction equal load type
- b. Various specifications for easy design with space and load rating taken into account
- c. Balls are maintained during the assembly of a block and a rail since a wire to retain balls is built in the block.
- d. Its material is stainless steel which does not rust easily, so it is very suitable for the environment where rust and particle generation should be prevented - clean room, for instance.

6. Wide Miniature Linear Motion Guide RMB Series

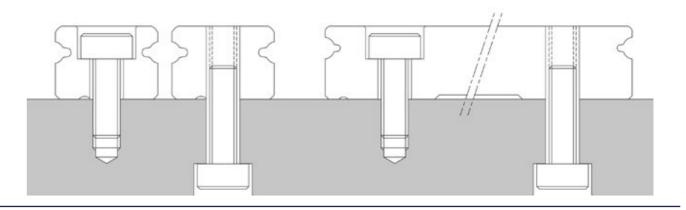
1) Structure of RMB Series

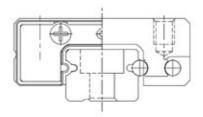

RBX Miniature Linear Motion Guide RMB Series has a 4-direction equal load type which is identical to M Series, and the basic load rating and moment load are significantly improved compared to the general M Series by broadening the width between a rail and a block.

2) Features of RMB Series

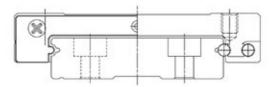

- a. As the width between a rail and a block is broadened and the number of balls increased, load rating and momen load are improved.
- b. Suitable for use in a one-axis type since it is wider than the general miniature Linear Motion guide and rigidity increased.
- e. A compact highly-rigid 4-direction equal load type
- f. Various specifications for easy design with space and load rating taken into account
- g. Balls are maintained during the assembly of a block and a rail since a wire to retain balls is built in the block.
- h. Its material is stainless steel which does not rust easily so it is very suitable for the environment where rust and particle generation should be prevented for clean room, for instance. For RMB12 and RMB15 Model Numbers, Bearing Steel material (RMBT12, RMBT15) is ready to produce.

Miniature Linear Motion Guide RM, RMB Series



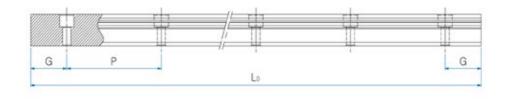


WIDE BODY



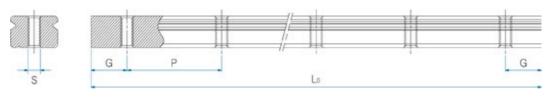
BOLT FASTENING

Standard RM Series



Wide body RMB Series

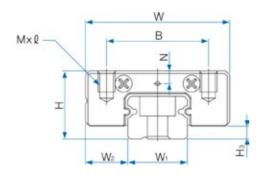
Types and Features


Category Туре Shape & Features RM-C Standard Miniature Linear Motion Guide Compact type RM-N Bearing steel material of blocks for the type of RMT12 and RMT15 are available. Semiconductor test equipment, semiconductor RM-L assembly equipment, display test equipment, HEAD-axis LED inspection equipment, pneumatic machinery, table cylinder, automation machinery, medical equipment, RMB-C smart actuators, RMBT-C Cartesian coordinated robot, UVW stage High rigidity is achieved as the block is wider and longer than M Series to increase load Wide RMB-N rating and allowable moment. RMBT-N board Bearing steel material of blocks for the type of RMBT12 and RMBT15 are available. RMB-L RMBT-L

STANDARD AND MAXIMUM LENGTH OF A RAIL

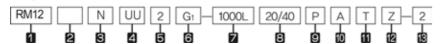
Model No.	RM5	RM7	RM9	RM12	RMT12	RM15	RMT15	RM20	RMB5	RMB7	RMB9	RMB12	RMBT12	RMBT15	RMB15
	40	40	55	70	70	70	70	220	50	50	50	70	70	110	110
	55	55	75	95	95	110	110	280	70	80	80	110	110	150	150
	70	70	95	120	120	150	150	340	90	110	110	150	150	190	190
	-	-	115	145	145	190	190	460	-	-	140	190	190	230	230
Standard length	100	100	-	170	170	230	230	-	130	260	-	230	230	270	270
	130	130	275	-	-	-	-	1120	150	290	500	-	-	-	-
	160	160	375	570	570	670	670	1240	170	350	710	590	590	750	750
			495	695	695	870	870	1360			860	750	750	790	790
				820	820	1070	1070					910	910	910	910
Standard maximum length of a rail	1000	1000	995	995	1995	1990	1990	1960	990	980	2000	1990	1990	1990	1990
Standard pitch P	15	15	20	25	25	40	40	60	20	30	30	40	40	40	40
G	5	5	7.5	10	10	15	15	20	5	10	10	15	15	15	15
Max. length		1(000			20	00		10	00			2000		

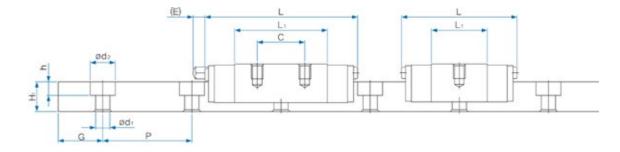
STANDARD TAP HOLE TYPE OF A RAIL



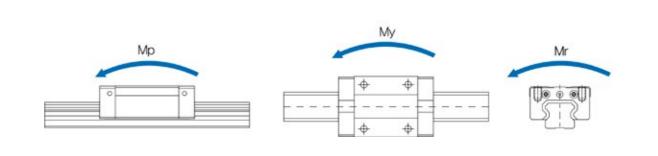
Model No.	S (Thru)
RM5	M2.6
RM7	M3
RM9	M4
RM12 / RMT12	M4
RM15 / RMT15	M4
RM20	M6

Unit: mm


Model No.	S (Thru)
RMB5	M3
RMB7	M4
RMB9	M4
RMB12 / RMBT12	M5
RMB15 / RMBT15	M5


Model	Exterr	nal dime	nsions			Dimen	sions of	block			
No.	Height H	Width W	Length L	В	С	Mxł	L1	N	E	Grease nipple	H3
RM5C			17	8	-	M2x1.5	9.4				
RM5N	6	12	20	0	-		12.4	1.2	-	-	1
RM5NA				-	7	M2.6x1.5					
RM7C			19.8		-		9.6				
RM7N	8	17	24.3	12	8 13	M2x2.5	14.1	1.5			1.5
RM7L	0	17	31.8	12		IV\ZXZ.J	21.6	1.5	-		1.5
RM7LA			51.0		12		21.0				
RM9C			22.4		-		11.8				
RM9N	10	20	31.3	15	10	M3x3	20.7	2.2			2
RM9L	10	20	41.4	16	WOYO	30.8	2.2			2	
RM9LA			71.7		15						
RM12C			26.4		-		12.8				
RM12N	13	27	34.9	20	15	M3x3.5	21.3	2.7	-	-	3
RM12L			45.4		20		31.8				
RM15C			34.4		-		17.7				
RM15N	16	32	44.4	25	20	M3x4	27.7	3.1	4	A-M3	4
RM15L			59.4		25		42.7				
RM20C			39.8 51.8	30	-		22.2				
RM20N	20	40			25		34.2	4.2	4	A-M3	5
RM20L	20		69.8		30		52.2				

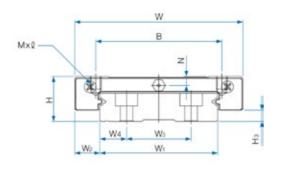
Composition of Model No.



- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type
- ${f 3}$ Form of block : C-Rectangular short type / N-Rectangular standard type / L-Rectangular long type
- 4 Type of seal : UU-End seal / UULF-End seal + LF seal (*1)
- 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision : No symbol-Moderate precision / H-High precision / P-Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface (*3
- (*1) See P139 Symbol List of Optional Parts (*3) See P45 Selection of Precision Class

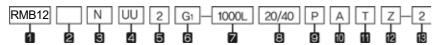
*Bearing steel material of rails for the type of MT12 and MT15 are available

		n	imensio	on of P	ail		Basic	: load	Sta	tic allow	ance r	noment	N-m	Mass	
					.an		rat	ing		Mp		My	Mr		
	Vidth W1	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C N	Co N	1	2 (contact)	1	2 (contact)	1	Block g	Rail g/m
5	0	3.5	3.7	5	15	2.4x3.6x0.8	516	757	1.3	7.1	1.3	7.1	2.01	3.1	139
J	-0.02	5.5	5.7	J	IJ	2.483.080.0	631	1,009	2.2	11.6	2.2	11.6	2.67	4.0	137
	<u> </u>						901	1,136	1.9	11.8	1.9	11.8	4.14	6.4	
7	0 -0.02	5	5	5	15	2.4x4.2x2.3	1,197	1,703	4.2	23.1	4.2	23.1	6.22	9.0	253
	0.02						1,631	2,650	10.1	50.0	10.1	50.0	9.67	12.6	
	<u>,</u>						1,180	1,485	3.1	17.9	3.1	17.9	6.90	9.9	
9	0 -0.02	5.5	6	7.5	20	3.5x6x3.5	1,721	2,545	9.3	46.6	9.3	46.6	11.84	17.1	391
	-0.02		F				2,375	4,030	21.9	102.8	21.9	102.8	18.74	25.2	
	•						2,175	2,385	5.4	32.9	5.4	32.9	14.79	19.8	
12	0 -0.025	7.5	8	10	25	3.5x6.5x4.5	3,023	3,816	14.4	75.8	14.4	75.8	23.66	31.5	679
	-0.025						4,246	6,200	34.8	169.1	34.8	169.1	38.44	45.9	
							3,418	3,895	12.2	71.6	12.2	71.6	29.99	37.8	
15	0 -0.025	8.5	10	15	40	3.5x6.5x4.5	4,540	5,842	28.6	148.7	28.6	148.7	44.99	57.6	1071
	-0.025						6,492	9,737	73.5	351.2	73.5	351.2	74.98	85.5	
	0						4,512	5,299	20.7	115.9	20.7	115.9	54.05	80.1	
20	0 -0.03	10	11	20	60	6x9.5x5.5	6,191	8,328	50.2	252.7	50.2	252.7	84.94	119.7	7 1572
	0.03						8,396	12,870	118.6	554.4	118.6	554.4	131.27	176.4	



(*2) See P30 Radial Clearance

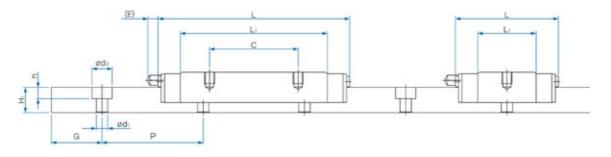
(*4) See P123 Standard tap hole type of a rail


Unit: mm

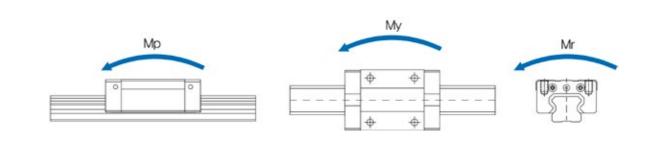
Model	Exter	nal dime	nsions			Dimen	sions of	block									
No.	Height H	Width W	Length L	В	С	Mxł	L1	N	E	Grease nipple	H3						
RMB 5C	4 5	17	21	13	-		13.4	1 4	-	- [1 2						
RMB 5N	6.5	1/	25	15	-	M2.5x1.5	17.4	1.4	-	-	1.3						
RMB 7C			24		-		12.6		-	-							
RMB 7N	9	25	33	19	10	M3x3	21.6	1.7	-	-	2						
RMB 7L			43.5		19		32.1		-	-							
RMB 9C	12		28.1	21	-		16.5		-	-							
RMB 9N	12	30	40.2	Ζ1	12	M3x3	28.6	3.2	-	-	3						
RMB 9L	12		52	23	24		40.4		-	-							
RMB 12C			31.1		-	M3x3.5	17.5		-	-							
RMB 12N	14	40	44.5	28	15		30.9	3	-	-	4						
RMB 12L			59.7		28		46.1	7	-	-							
RMBT 13C			35.3		-		18.7										
RMBT 13N	15	50	49.2	35	18	M4x4.5	32.6	3.1	3.5	A-M3	3						
RMBT 13L	IJ		68.6		35		52										
RMB 15C			42.8		-		25.2										
RMB 15N	16	60	56.6		20	M4x4.5	39		3.5 4	A-M3	4						
RMB 15L	16	16	16	16	16	10	16		75.8		35		58.2				

Composition of Model No.

- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type / S-Spacer Chain type
- 3 Form of block : C-Rectangular short type / N-Rectangular standard type / L-Rectangular long type
- 4 Type of seal : UU-End seal / UULF-End seal + LF seal (*1)
- **5** Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload (*2)
- 7 Length of rail
- **8** Size of G value: standard G value has no symbol.
- 9 Symbol of precision : No symbol-Moderate precision / H-High precision / P-Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P139 Symbol List of Optional Parts (*3) See P45 Selection of Precision Class


(*2) See P30 Radial Clearance

- (*4) See P123 Standard tap hole type of a rail


*Bearing steel material of rails for the type

*MB13 is available only with bearing steel

of MBT12 and MBT15 are available

				Dim	oncion	of Rai			Basic	load	Stat	tic allow	/ance	moment	N-m	Mass	
									rat	ing		Мр		My	Mr		
٧	Vidth W1	W2	W3	W4	Heigh H1	Value G	Pitch P	d1 x d2 x h	C N	Co N	1	2 (contact)	1	2 (contact)	1	Block g	Rail g/m
10	0	2 5			4	5	20	2.9x4.8x1.6	66,8	1,094	2.6	13.3	2.6	13.3	5.63	5.3	299
10	-0.025	3.5	-	-	4	5	20	2.9X4.0X1.0	80,6	1,430	4.4	21.4	4.4	21.4	7.36	6.8	299
	_								1,102	1,514	3.4	19.5	3.4	19.5	10.83	11.7	
14	0 -0.05	5.5	-	-	5.5	10	30	3.5x6x3.2	1,631	2,650	10.1	51.1	10.1	51.1	18.95	18.9	560
	0.00								2,166	3,975	22.5	106.1	22.5	106.1	28.42	27.9	
	0								1,515	2,121	6.2	33.4	6.2	33.4	19.41	23.4	
18	-0.05	6	-	-	7	10	30	3.5x6x4.5	2,197	3,606	18.2	87.6	18.2	87.6	33.00	39.6	912
	0.00							-	2,878	5,303	37.8	172.9	37.8	172.9	48.52	54.9	
	0			-				*	2,753	3,339	10.3	57.3	10.3	57.3	40.73	40.5	+
24	-0.05	8	-	-	8.5	15	40	4.5x8x4.5	4,015	5,723	31.2	152.2	31.2	152.2	69.83	68.4	1369
							-		5,539	9,062	73.8	338.7	73.8	338.7	110.56	99.9	
	0			-			-	*	3,694	4,351	14.3	82.8	14.3	82.8	66.1	60.0	
30	-0.05	10	-	-	9	15	40	4.5x8x4.5	5,457	7,599	43.7	219.3	43.7	219.3	115.5	103.8	2086
									7,576	12,142	111.5	517.4	111.5	517.4	184.6	165.0	
	0								4,954	6,056	26.9	145.3	26.9	145.3	128.40	85.5	
42	-0.05	10	23	9.5	9.5	15	40		6,579	9,085	62.5	306.5	62.5	306.5	192.60	126.0	2886
									9,076	14,384	147.8	680.6	147.8	680.6	304.94	183.6	

Unit: mm

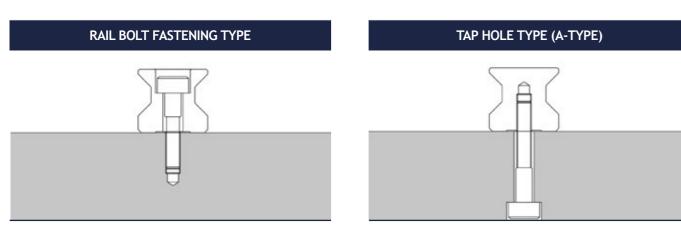
1N≒0.102kgf

127

7. Roller Linear Motion Guide RBR Series

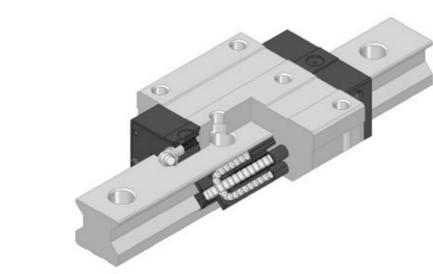
1) Structure of RBR Series

RBX Linear Motion Guide RBR Series uses rollers as a rolling element between the raceway surface of a rail and a block and its four-row cylindrical roller forms a contact angle of 45° which bears equal load for vertical tensile compression load and horizontal load.

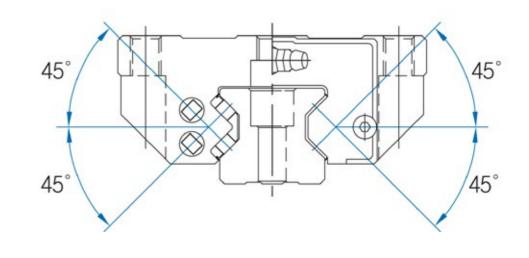

A roller used as a rolling element has less elastic displacement than a ball so it has small displacement for external load. Also the contact area with the roller is wide so that it has advantages such as high rigidity, bearing against big load, long life, impact resistance and wear resistance as well as less friction resistance that supports smooth motion and quite running. Moreover if the roller is preloaded, it can enhance the rigidity of Linear Motion guide.

2) Features of RBR Series

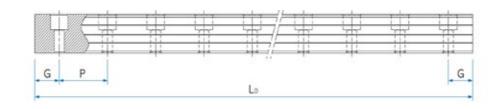
- a. High quality and very effective in realizing high precision and elimination of labor
- b. High rigidity and high precision which can realize the stable travel for a long time
- c. Great wear resistance and friction resistance which ensures a long life
- d. High rigidity and overload capacity compared to ball types of the same model no.
- e. Excellent vibration resistance since it has less displacement against impact load or variable load than ball types and vibration decay time is shorter compared to natural frequency
- f. Bigger basic static load rating than ball-type Linear Motion guide with the same specifications allows the compact design using smaller model no. than ball types. If same model no. is used, it achieves longer life due to bigger load rating
- g. Various specification for easy design



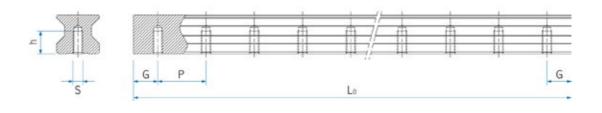
Rail bolt fastening type



Roller Linear Motion Guide RBR Series

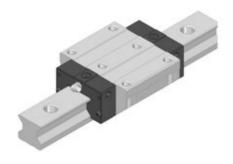

CROSS SECTION

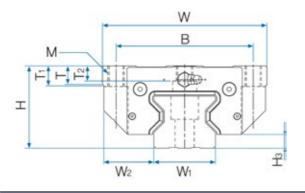
Types and Features


Category Туре Shape & Features •With the tapped flange of a lock, it can be assembled both from bottom to top and RBR-F from top to bottom •A 4-direction equal load type with high rigidity and high load Flange type •Having the roller contact structure and the cross section identical to those of RBS-F Series, it increased load rating by extending the RBR-FL whole length (L1) of Linear Machine tool, Motion guide CNC machining center, •A 4-direction equal load CNC tapping center, type with high rigidity and NC milling machine, high load boring machine, multiple machining center, planer miller, large injection machine, heavy-duty cutting machine, •With the tapped top side wire-cut pentahedral of a block, a compact type processing center, that the width of Linear display test equipment Motion guide block is RBR-R minimized •A 4-direction equal load type with high rigidity and high load Compact type •Having the cross section identical to that of RBH-R Series, it increased load rating by extending the RBR-RL whole length (L1) of Linear Motion guide block •A 4-direction equal load type with high rigidity and high load

STANDARD AND MAXIMUM LENGTH OF A RAIL

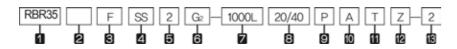
Model No.	35	45	55				
	280	570	780				
	520	885	900				
	920	1095	1140				
	1240	1305	1380				
Standard	1400	1515	1620				
length	-	-	-				
	1960	2040	2100				
	2360	2460	2580				
	2840	2985	3060				
		3090					
Standard pitch P	40	52.5	60				
G	20	22.5	30				
Max. length	4000						

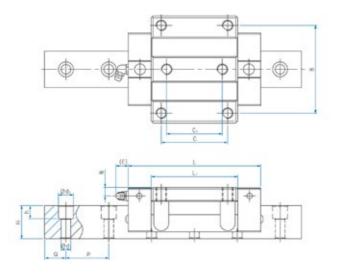

STANDARD TAP HOLE TYPE OF A RAIL



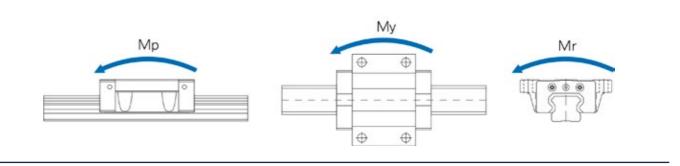
Model No.	S	h(mm)
RR35T	M8	17
RR45T	M12	24
RR55T	M14	24

Unit: mm


RBR-F Series, RBR-FL Series

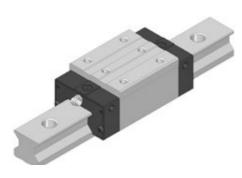

Model	External dimensions			Dimensions of block												
No.	Height H	Width W	Length L	В	С	C2	M	S	L1	т	T1	T2	N	E	Grease nipple	H3
RBR 35F	48	100	125.1	82	62	52	M10	8.5	82.5	12	13	8	8	12	B-M6F	7
RBR 35FL	48	100	152.1	82	62	52	M10	8.5	109.5	12	13	8	8	12	B-M6F	7
RBR 45F	60	120	154.4	100	80	60	M12	10.5	106.6	13.5	15	11	10	16	B-PT 1/8	10
RBR 45FL	60	120	189.4	100	80	60	M12	10.5	141.6	13.5	15	11	10	16	B-PT 1/8	10
RBR 55F	70	140	181.6	116	95	70	M14	12.5	127.8	17.5	18	13.5	11	16	B-PT 1/8	10
RBR 55FL	70	140	229.6	116	95	70	M14	12.5	175.8	17.5	18	13.5	11	16	B-PT 1/8	10

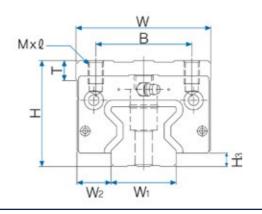
Composition of Model No.



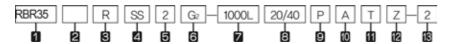
- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type
- 3 Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal : UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper (*1)
- 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- 8 Size of G value: standard G value has no symbol.
- 9 Symbol of precision : No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- **11** Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface (*3) Se
- (*1) See P139 Symbol List of Optional Parts (*3) See P45 Selection of Precision Class

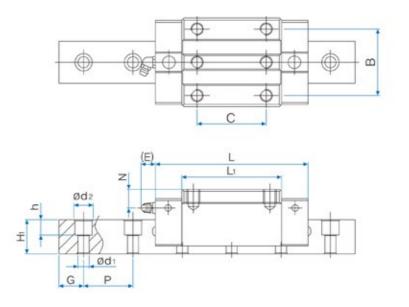
(*2) See P30 Radial Clearance (*4) See P131 Standard tap hole type of a rail



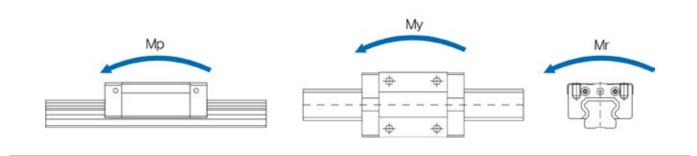

	Dimension of Rail						Basic load		ic allow	ance m	oment k	N-m	Mass	
		Dimen		καιι		rat	rating Mp			My Mr				
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
34	33	31	20	40	9x14x12	50.7	121.5	1.772	8.919	1.772	8.919	2.606	1.703	6.27
34	33	31	20	40	9x14x12	63.5	162.0	3.136	14.985	3.136	14.985	3.475	2.263	6.27
45	37.5	38	22.5	52.5	14x20x17	82.3	210.0	3.957	19.380	3.957	19.380	5.652	3.19	10.193
45	37.5	38	22.5	52.5	14x20x17	102.9	280.0	7.009	32.771	7.009	32.771	7.536	4.266	10.193
53	43.5	43.5	30	60	16x23x20	114.8	283.5	6.406	31.061	6.406	31.061	9.364	5.393	13.37
53	43.5	43.5	30	60	16x23x20	147.5	391.6	12.168	56.12	12.168	56.121	12.931	7.5	13.37

Unit: mm


RBR-R Series, RBR-RL Series


Model	Exteri	Dimensions of block										
No.	Height H	Width W	Length L	В	с	Mxł	L1	т	N	E	Grease nipple	H3
RBR 35R	55	70	125.1	50	50	M8x12	82.5	10.3	15	12	B-M6F	7
RBR 35RL	55	70	152.1	50	72	M8x12	109.5	10.3	15	12	B-M6F	7
RBR 45R	70	86	154.4	60	60	M10x20	106.6	24.5	20	16	B-PT 1/8	10
RBR 45RL	70	86	189.4	60	80	M10x20	141.6	24.5	20	16	B-PT 1/8	10
RBR 55R	80	100	181.6	75	75	M12x18	127.8	27.5	22	16	B-PT 1/8	10
RBR 55RL	80	100	229.6	75	95	M12x18	175.8	27.5	22	16	B-PT 1/8	10

Composition of Model No.



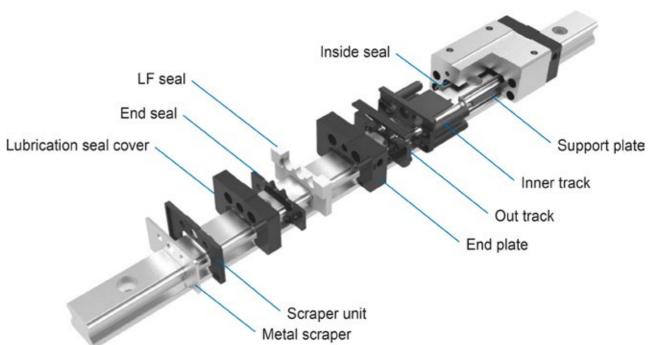
- 1 Model No. of Linear Motion Guide
- 2 Type of block: No symbol-Full-ball type
- 3 Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper (*1)
- 5 Number of blocks combined in 1 rail
- 6 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 7 Length of rail
- **8** Size of G value: standard G value has no symbol.
- 9 Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- 10 No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- **13** Number of axis used on the same surface

(*1) See P139 Symbol List of Optional Parts (*3) See P45 Selection of Precision Class (*2) See P30 Radial Clearance (*4) See P131 Standard tap hole type of a rail

Dimension of Rail					Basic load		Stat	ic allow	N-m	Mass				
		Dimen		Kall		rat	ing	٨	Mp My			Mr		
Width W1 ± 0.05	W2	Heigh H1	Value G	Pitch P	d1 x d2 x h	C kN	Co kN	1	2 (contact)	1	2 (contact)	1	Block kg	Rail kg/m
34	18	31	20	40	9x14x12	50.7	121.5	1.772	8.919	1.772	8.919	2.606	1.179	6.27
34	18	31	20	40	9x14x12	63.5	162.0	3.136	14.985	3.136	14.985	3.475	2.263	6.27
45	20.5	38	22.5	52.5	14x20x17	82.3	210.0	3.957	19.380	3.957	19.380	5.652	3.103	10.193
45	20.5	38	22.5	52.5	14x20x17	102.9	280.0	7.009	32.771	7.009	32.771	7.536	4.08	10.193
53	23.5	43.5	30	60	16x23x20	114.8	283.5	6.406	31.061	6.406	31.061	9.364	4.723	13.37
53	23.5	43.5	30	60	16x23x20	147.5	391.6	12.168	56.121	12.168	56.121	12.931	6.466	13.37

Unit: mm

13


 Seal and Rail Cap
 Oil Filler
 Grease Nipple
 Connection of oil pipes
 How to install Linear Motion guide using a support rail

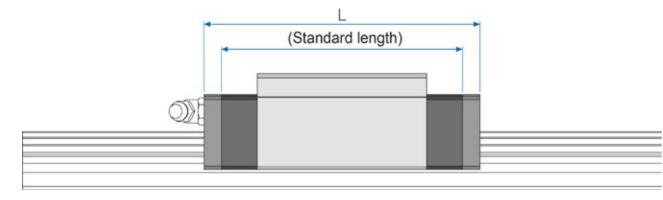
1. Seal and Rail Cap

ltem	Place to attach seal	Applications
End seal	End seal Wrench bolt	•Where dust or particle is frequently generated
Inside seal	Inside seal	 Where foreign substance can be easily accessed from the flank or bottom Where Linear Motion guide is moving in a vertical, horizontal, and reverse direction Where a lot of cutting chips or foreign substance present Where there is a danger in the intrusion of cutting chips or foreign substances into the block
Metal scraper	Metal scraper	•Where spatters may arise such as welding slag or metal powers
LF seal	LF seal	 Use within the maximum operating temperature of 40°C Avoid contact with organic solvents, such as thinner or milky white oil During the initial use of the LF-SEAL, the rolling resistance may increase LF-SEAL (1EA) should use both sides of each block
Rail cap		 If foreign substance enters into the bolt holes in a rail, it may intrude even into the block. A metal or plastic cap is used to prevent i. C: plastic material railcap MC: metal material railcap railcap for each part no in the catalog is available

Symbol List of Optimal Part

Symbol	
UU	
SS	
ZZ	
UULF	
SSLF	
ZZLF	

Option Mapping Table by Model No.


Symbol	Ball Linear Motion Guide	Miniature Linear Motion Guide	Roller Linear Motion Guide	
Symbol	RBH Series / S Series	RM / RMB Series	RBR Series	
UU	0	0	-	
SS	0	-	-	
ZZ	0	-	0	
UULF	0	0	-	
SSLF	0	-	-	
ZZLF	0	-	-	

Options

Х

Optional parts
End seal
End seal + Inside seal
End seal + Inside seal + Metal scraper
End seal + LF seal
End seal + Inside seal + LF seal
End seal + Inside seal + Metal scraper + LF seal

The installation option table of Linear Motion Guide way

Unit: mm

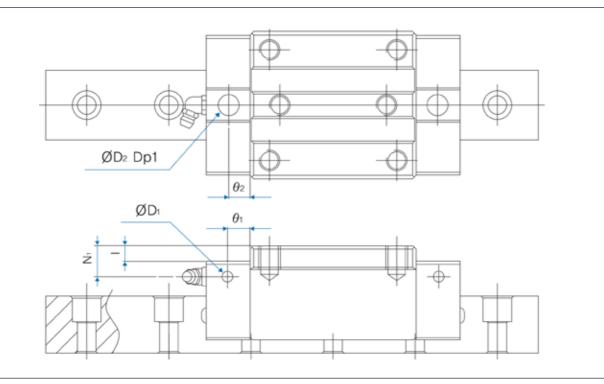
	Cashal	Standard	L								
	Symbol	length	UU	SS	ZZ	UULF	SSLF	ZZLF			
	15F/R/SF/SR	57	57	57	63.7	69	69	75.7			
	15FL/RL/SFL/SRL	65.3	65.3	65.3	72	77.3	77.3	84			
	20F/R/SF/SR	72.7	72.7	72.7	81.4	84.7	84.7	93.4			
	20FL/RL/SFL/SRL	88.6	88.6	88.6	97.3	100.6	100.6	109.3			
	25F/R/SF/SR	83	83	83	91.7	95	95	103.7			
	25FL/RL/SFL/SRL	102.9	102.9	102.9	111.6	114.9	114.9	123.6			
RBH	30F/R/SF/SR	97.8	97.8	97.8	107.7	111.8	111.8	121.7			
KDH	30FL/RL/SFL/SRL	120	120	120	129.9	134	134	143.9			
	35F/R/SF/SR	110	110	110	120	124	124	134			
	35FL/RL/SFL/SRL	135.4	135.4	135.4	145.4	149.4	149.4	159.4			
	45F/R/SF/SR	139	139	139	148.9	154	154	163.9			
	45FL/RL/SFL/SRL	170.8	170.8	170.8	180.7	185.8	185.8	195.7			
	55F/R/SF/SR	163	163	163	172.9	179	179	188.9			
	55FL/RL/SFL/SRL	201.1	201.1	201.1	211	217.1	217.1	227			
	15C/CF/SC/SCF	40.2	40.2	40.2	46.9	52.2	52.2	58.9			
	15R/F/SR/SF	56.9	56.9	56.9	63.6	68.9	68.9	75.6			
DDC	20C/CF/SC/SCF	47.2	47.2	47.2	55.9	59.2	59.2	67.9			
RBS	20R/F/SR/SF	66.3	66.3	66.3	75	78.3	78.3	87			
	25C/CF/SC/SCF	59.1	59.1	59.1	67.8	71.1	71.1	79.8			
	25R/F/SR/SF	83	83	83	91.7	95	95	103.7			
	25SR	83	83	83	91.7	95	95	103.7			
	25SRL	102.9	102.9	102.9	111.6	114.9	114.9	123.6			
DDUC	30SR	97.8	97.8	97.8	107.7	111.8	111.8	121.7			
RBHS	30SRL	120	120	120	129.9	134	134	143.9			
	35SR	110	110	110	120	124	124	134			
	35SRL	135.4	135.4	135.4	145.4	149.4	149.4	159.4			

• LF-SEAL General Precautions 1. Use within the maximum operating temperature of 40° C. 2. Avoid contact with organic solvents, such as thinner or milky white oil. 3. During the initial use of the LF-SEAL, the rolling resistance may increase. 4. LF-SEAL (1EA) should use both sides of each block.

Unit: mm

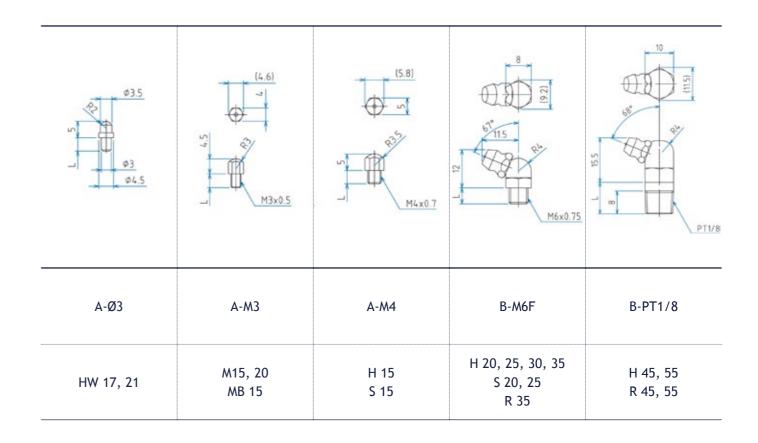
		Standard	l	_	
2	Symbol	length	UU	UULF	
	5C	17	17	21.4	
	5N	20	20	24.4	
	5NA	20	20	24.4	
	7C	19.8	19.8	24.8	
	7N	24.3	24.3	29.3	
	7L	31.8	31.8	36.8	
	7LA	31.8	31.8	36.8	
	9C	22.4	22.4	27.4	
	9N	31.3	31.3	36.3	
DU	9L	41.4	41.4	46.4	
RM	9LA	41.4	41.4	46.4	
	12C	26.4	26.4	32.4	
	12N	34.9	34.9	40.9	
	12L	45.4	45.4	51.4	
	15C	34.4	34.4	41.4	
	15N	44.4	44.4	51.4	
	15L	59.4	59.4	66.4	
	20C	39.8	39.8	46.8	
	20N	51.8	51.8	58.8	
	20L	69.8	69.8	76.8	

Options


L Standard Symbol length UU UULF 5C 21 21 25.4 25 5N 25 29.4 7C 24 24 29 7N 33 33 38 7L 43.5 43.5 48.5 9C 28.1 28.1 33.1 9N 40.2 40.2 45.2 9L 52 52 57 RMB 12C 37.1 31.1 31.1 12N 44.5 44.5 50.5 12L 59.7 59.7 65.7 35.3 42.3 13C 35.3 49.2 49.2 56.2 13N 13L 68.6 75.6 68.6 42.8 15C 42.8 49.8 15N 56.6 56.6 63.6 75.8 15L 75.8 82.8

Unit: mm

2. Oil Filler

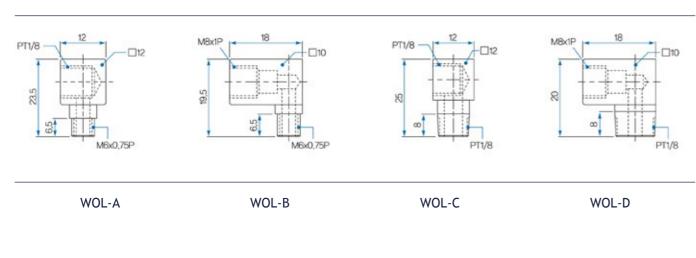


Fuelling on the side and top is available in RBR Series. The standard specification does not include the oil filler that penetrates the block of Linear Motion guide to protect it from foreign substance.

3. Grease Nipple

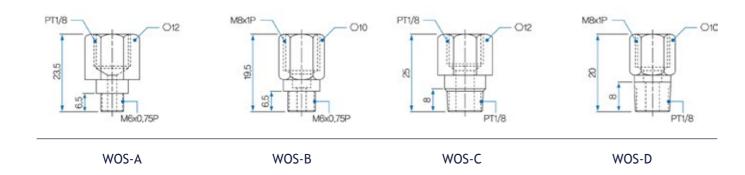
Madal Na		Hole for a side nipple			Top oil filler			
	Model No.		N1	D1	D2	(O-ring)	I	θ2
	35F(L)	10.4	8	5.2	10.7	S7	0.4	11
	35R(L)	10.4	15	5.2	10.7	S7	7.4	11
RBR	45F(L)	10.4	10	5.2	10.7	S7	0.4	11
KDK	45R(L)	10.4	20	5.2	10.7	S7	10.4	11
	55F(L)	12.5	11	5.2	10.7	S7	0.4	11
	55R(L)	12.5	21	5.2	10.7	S7	10.4	11

Unit: mm

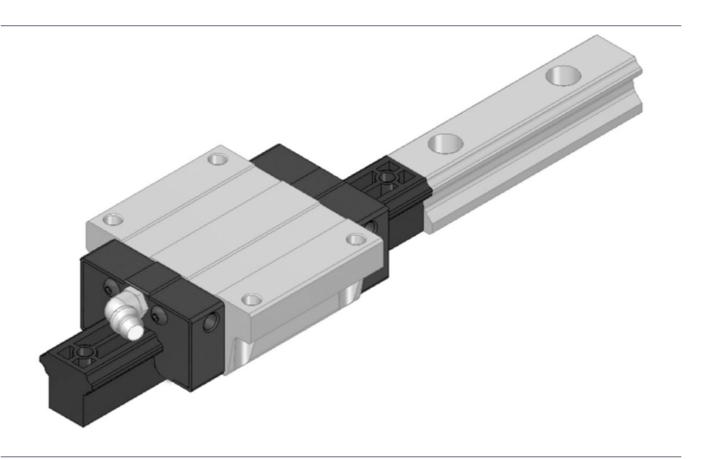

	ease nipple nodel no.	A - Ø3	A-M3	A-M4		B-M6F		B-PT1/8
	pplication nodel no.	RBW 17, 21	RM 15, 20 RMB 13,15		RBH 20,25 RBS 20,25	RBH 30,35	RBW 27,35	RBH 45,55
<u> </u>	Standard	4	4.2	4	5	5	5	8
ad (l gth	ZZ	-	-	6	7	7	-	11
Thread (L) Length	LF	9	7.7	10	10	12	12	15.5
F	LF + ZZ	-	-	12	12	14.5	-	18


Options

X


4. Connection of oil pipes

WOL Type



WOS Type

Linear Motion guide block should be inserted into or removed from the rail using a support rail for safety. If you install the block in the rail without using the support rail, a rolling element may deviate from the block and damage or destroy the parts inside. If the block without a rolling element is installed, it may significantly shorten the block's life and lead to load reduction and early breakage. If you use the support rail, do not lean it. Adhere it to the end of the rail and slowly apply force to assemble it.

Options

Instructions for Handling

Handling
 Lubrication
 Caution for Use
 Storage

14

1. Handling

- 1) The packaged RBX Linear Motion guide is damp-proof after grease removal and cleaning, so please open it just before use.
- 2) The rail-block compatible product is fitted with a plastic support rail. Please take caution when assembling it with the rail.
- If you reassemble a block-rail set product or a single block product after dismantling it into pieces, foreign substance may intrude into the block, decreasing performance to make rolling motion unsmooth or damaged. So please do not disassemble it.
- 4) If either a rail or a block leans to one side, the block or the rail may fall to be damaged. Please take caution and avoid the deviation of the block or the rail.
- 5) The end plate may be damaged if impact is applied since it is made of plastic material. Please be careful.

2. Lubrication

- 1) If the product is supplied as it is applied by rust preventive oil, please clean it off thoroughly and fill lubricant prior to use.
- 2) Do not mix it with other lubricants such as thickener or additive. If so, it may destroy the structure of grease or cause a harmful effect.
- 3) Viscosity of grease may vary depending on temperature and increase in winter due to low temperature, and the friction resistance of Linear Motion guide may increase.
- 4) In case of using special lubricant, please contact us in advance.
- 5) In case of using oil lubricant, it may not reach the hole of raceway depending on the assembly status or direction of a block and a rail, so no lubricating effect may be obtained.

- 1) After opening the product, please put damp-proof agent inside the dry container for storage.
- 2) Please handle the product after wearing plastic gloves in a clean place.
- 3) Please be careful to protect it from foreign substance which may inhibit rolling motion or damage function.
- 4) Please protect it using a holding door or cover to prevent Linear Motion guide exposed directly to poor environment that may cause corrosion or damage.
- 5) In case of using standard plastic end plate-based Linear Motion guide, use it at under 80°C. To use it at higher temperature than 80°C, please order a metal end plate which will specially customized.
- 6) If the rail of Linear Motion guide is fixed at the ceiling or in high place and if the block bears load downwards, the end plate may be destroyed or a ball may come off from the rail resulting in the fall of the block and fixtures. So please take a measure to install a safety device.

Depending on storage conditions, a rail may warp. For storage, place it in a horizontal position in the package box provided by RBX or in a similar box with the flat bottom and avoid the environments where temperature is too high or low and very humid.

Cause and Countermeasure of Damage of Linear Motion Guide Comparison

	Condition	Cause	Countermeasures
		Damage by life	Change Linear Motion guide
Fatigue failure on the rolling	 Flaking Caused by rolling fatigue on the rolling surface Maximum shear stress-induced internal 	Overload	Reconsider the model no. selected, use higher model no., lower the load level, reinforce the assembly precision during installation, enhance the rigidity of base and table
surface	cracks are expressed on the surface.	Poor lubrication	Refill lubricant, shorten the refilling interval o lubricant, review the relevance of lubricant in use, improve the lubricant passage
Indentation of the rolling	 Indentation Plastic deformation on the rolling surface 	Impact load or excessive external load	Reconsider the model no. selected, lower the load level, reinforce the assembly precision during installation, use the higher model no.
surface	due to excessive external load	Careless handling	Prevent impact and fall during handling Improve handling method and environment
	 Burn Rough surface of the rolling surface due to slight burning by friction between a rolling 	Poor lubrication	Refill lubricant, use the optimal lubricant, improve the lubrication method
Seizing	 element and the rolling surface Cause for the discoloration of the rolling surface, weakened hardness, and flakin 	Overload	Review the service conditions, lower the load level, use the higher model no. enhance the assembly precision during installation
	• Cracking - Partial breaking into pieces of a rolling	Impact load or excessive external load	Reconsider the model no. selected, use the higher model no. lower the load level, enhance the assembly precision during installation
Cracking	element or rolling surface due to excessive external load	Poor raceway circulation of a rolling element	Prevent the intrusion of foreign substance, develop a dust proof measure, refill lubricant, shorten the refilling interval of lubricant, improve the lubrication method
	• Abnormal wear - Rapid increase in wear as the slippery	Excessive load or excessive eccentric load	Reconsider the model no. selected, use the higher model no., lower the load level, enhance the assembly precision during installation
Abnormal wear	between a rolling element and the rolling surface	Foreign	Complement the performance of seal, develop a dust proof measure
	 Cause for failure in precision and preload as companied by oxidation wear 	Substance	Refill lubricant, use the optimal lubricant, improve the lubrication method, improve the lubricant passage
	Vibration Wass facilitated by the lass of ail film	Load	Review the service conditions, use the higher model no., enhance the assembly precision during installation
Flatting corrosion	 Wear facilitated by the loss of oil film during the running of vibrant stroke and the slippery between a rolling element and the rolling element 	Vibration	Improve the transport condition, change lubricant, improve the lubrication method, shorten the refilling interval of lubricant
		Foreign substance	Complement the performance of seal, develop a dust proof measure
Rust	 Rust Caused by the loss of oil film or contact of exposed part to water, acid, alkaline and 	Intrusion of cooling water	Make a rust-preventive treatment onto the surface, complement the performance of seal, change lubricant, change cooling agent, refill lubricant, shorten the refilling interval of lubricant
prevention	especially when cooling water enters into the block; cause for early flaking due to	High humidity	Make a rust-preventive treatment onto the surface, improve environment
	concentrated stress	Poor handling	Improve the condition of storage, reinforce the sealing performance, apply sufficient amount of rust-preventive oil

Comparison table of Full-Ball Type Model No. of Other Manufacturers

1. RBH Series (Standard Type)

RBX	тнк	NSK	PMI	HIWIN
RBH 15F RBH 15FL	HSR 15A, B	LH 15EL, EM LH 15GL, GM	MSA 15A	HGW 15CA
RBH 20F	HSR 20A, B	LH 20EL, EM	MSA 20A	HGW 20CA
RBH 20FL	HSR 20LA, LB	LH 20GL, GM	MSA 20LA	HGW 20HA
RBH 25F	HSR 25A, B	LH 25EL, EM	MSA 25A	HGW 25CA
RBH 25FL	HSR 25LA, LB	LH 25GL, GM	MSA 25LA	HGW 25HA
RBH 30F	HSR 30A, B	LH 30EL, EM	MSA 30A	HGW 30CA
RBH 30FL	HSR 30LA, LB	LH 30GL, GM	MSA 30LA	HGW 30HA
RBH 35F	HSR 35A, B	LH 35EL, EM	MSA 35A	HGW 35CA
RBH 35FL	HSR 35LA, LB	LH 35GL, GM	MSA 35LA	HGW 35HA
RBH 45F	HSR 45A, B	LH 45EL, EM	MSA 45A	HGW 45CA
RBH 45FL	HSR 45LA, LB	LH 45GL, GM	MSA 45LA	HGW 45HA
RBH 55F	HSR 55A, B	LH 55EL, EM	MSA 55A	HGW 55CA
RBH 55FL	HSR 55LA, LB	LH 55GL, GM	MSA 55LA	HGW 55HA
RBH 15R RBH 15RL	HSR 15R	LH 15AN, AL LH 15BN, BL	MSA 15S	HGH 15CA
RBH 20R	HSR 20R	LH 20AN, AL	MSA 20S	HGH 20CA
RBH 20RL	HSR 20LR	LH 20BN, BL	MSA 20LS	HGH 20HA
RBH 25R	HSR 25R	LH 25AN, AL	MSA 25S	HGH 25CA
RBH 25RL	HSR 25LR	LH 25BN, BL	MSA 25LS	HGH 25HA
RBH 30R	HSR 30R	LH 30AN, AL	MSA 30S	HGH 30CA
RBH 30RL	HSR 30LR	LH 30BN, BL	MSA 30LS	HGH 30HA
RBH 35R	HSR 35R	LH 35AN, AL	MSA 35S	HGH 35CA
RBH 35RL	HSR 35LR	LH 35BN, BL	MSA 35LS	HGH 35HA
RBH 45R	HSR 45R	LH 45AN, AL	MSA 45S	HGH 45CA
RBH 45RL	HSR 45LR	LH 45BN, BL	MSA 45LS	HGH 45HA
RBH 55R	HSR 55R	LH 55AN, AL	MSA 55S	HGH 55CA
RBH 55RL	HSR 55LR	LH 55BN, BL	MSA 55LS	HGH 55HA

2. RBW Series (Standard Wide body Type)

RBX	ТНК	NSK	PMI	HIWIN	IKO
RBW 17F	HRW 17CA	LW 17EL	-	WEW 17CC	LWFF 33
RBW 21F	HRW 21CA	LW 21EL	MSG 21E	WEW 21CC	LWFF 37
RBW 27F	HRW 27CA	LW 27EL	MSG 27E	WEW 27CC	LWFF 42
RBW 35F	HRW 35CA	LW 35EL	MSG 35E	WEW 35CC	LWFF 69
RBW 17R	HRW 17CR	-	-	WEH 17CA	LWFF 33
RBW 21R	HRW 21CR	-	MSG 21S	WEH 21CA	LWFF 37
RBW 27R	HRW 27CR	-	MSG 27S	WEH 27CA	LWFF 42
RBW 35R	HRW 35CR	-	MSG 35S	WEH 35CA	-

3. RBS Series (Slim Type)

RBX	тнк	NSK	РМІ	HIWIN
RBS 15C	SR 15V	LS 15CL	MSB 15TS	EGH 15SA
RBS 15R	SR 15W	LS 15AL	MSB 15S	EGH 15CA
RBS 20C	SR 20V	LS 20CL	MSB 20TS	EGH 20SA
RBS 20R	SR 20W	LS 20AL	MSB 20S	EGH 20CA
RBS 25C	SR 25V	LS 25CL	MSB 25TS	EGH 25SA
RBS 25R	SR 25W	LS 25AL	MSB 25S	EGH 25CA
RBS 15CF	SR 15SB	LS 15EM	MSB 15TE	EGW 15CA
RBS 15F	SR 15TB	LS 15JM	MSB 15E	EGW 15CB
RBS 20CF	SR 20SB	LS 20EM	MSB 20TE	EGW 20CA
RBS 20F	SR 20TB	LS 20JM	MSB 20E	EGW 20CB
RBS 25CF	SR 25SB	LS 25EM	MSB 25TE	EGW 25CA
RBS 25F	SR 25TB	LS 25JM	MSB 25E	EGW 25CB

4. RM Series (Miniature Standard Type)

RBX	ТНК	NSK	PMI	HIWIN	IKO
RM 5C RM 5N	SRS 5GM SRS 5GN	- LU 05TL	-	MGN 5C	LWLC 5 LWL 5
RM 7C	SRS 7GS	-	-	-	LWLC 7
RM 7N	SRS 7GM	LU 07AL	MSC 7M	Mgn 7C	LWL 7
RM 7L	SRS 7GN	-	MSC 7LM	Mgn 7H	LWLG 7
RM 9C	SRS 9GS	-	-	-	LWLC 9
RM 9N	SRS 9GM	LU 09TL	MSC 9M	Mgn 9C	LWL 9
RM 9L	SRS 9GN	LU 09UL	MSC 9LM	Mgn 9H	LWLG 9
RM 12C	SRS 12GS	-	-	-	LWLC 12
RM 12N	SRS 12GM	LU 12TL	MSC 12M	MGN 12C	LWL 12
RM 12L	SRS 12GN	LU 12UL	MSC 12LM	MGN 12H	LWLG 12
RM 15C	SRS 15GS	-	-	-	LWLC 15
RM 15N	SRS 15GM	LU 15AL	MSC 15M	MGN 15C	LWL 15
RM 15L	SRS 15GN	LU 15BL	MSC 15LM	MGN 15H	LWLG 15
RM 20C RM 20N RM 20L	SRS 20GM				LWLC 20 LWL 20 LWLG 20

5. RMB Series (Miniature Wide body Type)

RBX	ТНК	NSK	PMI	HIWIN	IKO
RMB 5C RMB 5N	SRS 5WGM SRS 5WGN	- LE 05AL	-	-	LWLFC 10 LWLF 10
RMB 7C	SRS 7WGS	-	-	-	LWLFC 14
RMB 7N	SRS 7WGM	LE 07TL	MSD 7M	MGW 7C	LWLF 14
RMB 7L	SRS 7WGN	-	MSD 7LM	MGW 7H	LWLFG 14
RMB 9C	SRS 9WGS	-	-	-	LWLFC 18
RMB 9N	SRS 9WGM	LE 09TL, TR	MSD 9M	MGW 9C	LWLF 18
RMB 9L	SRS 9WGN	-	MSD 9LM	MGW 9H	LWLFG 18
RMB 12C	SRS 12WGS	-	-	-	LWLFC 24
RMB 12N	SRS 12WGM	LE 12AL, AR	MSD 12M	MGW 12C	LWLF 24
RMB 12L	SRS 12WGN	-	MSD 12LM	MGW 12H	LWLFG 24
RMB 15C	SRS 15WGS	-	-	-	LWLFC 42
RMB 15N	SRS 15WGM	LE 15AL, AR	MSD 15M	MGW 15C	LWLF 42
RMB 15L	SRS 15WGN	-	MSD 15LM	MGW 15H	LWLFG 42

Comparison Table of Spacer Chain type No. of Other Manufacturers

1. RBH-S Series (Standard type)

RBX	тнк	NSK	PMI	HIWIN
RBH 15SF	SHS 15C	SH 15FL	SME 15EA	QHW 15CA
RBH 15SFL	SHS 15LC	SH 15HL	SME 15LEA	-
RBH 20SF	SHS 20C	SH 20FL	SME 20EA	QHW 20CA
RBH 20SFL	SHS 20LC	SH 20HL	SME 20LEA	QHW 20HA
RBH 25SF	SHS 25C	SH 25FL	SME 25EA	QHW 25CA
RBH 25SFL	SHS 25LC	SH 25HL	SME 25LEA	QHW 25HA
RBH 30SF	SHS 30C	SH 30FL	SME 30EA	QHW 30CA
RBH 30SFL	SHS 30LC	SH 30HL	SME 30LEA	QHW 30HA
RBH 35SF	SHS 35C	SH 35FL	SME 35EA	QHW 35CA
RBH 35SFL	SHS 35LC	SH 35HL	SME 35LEA	QHW 35HA
RBH 45SF	SHS 45C	SH 45FL	SME 45EA	QHW 45CA
RBH 45SFL	SHS 45LC	SH 45HL	SME 45LEA	QHW 45HA
RBH 55SF RBH 55SFL	SHS 55C SHS 55LC	SH 55FL SH 55HL	-	-
RBH 15SR	SHS 15R	SH 15AN	SME 15SA	QHH 15CA
RBH 15SRL	-	SH 15BN	SME 15LSA	-
RBH 20SR	SHS 20V	SH 20AN	SME 20SA	QHH 20CA
RBH 20SRL	SHS 20LV	SH 20BN	SME 20LSA	QHH 20HA
RBH 25SR	SHS 25R	SH 25AN	SME 25SA	QHH 25CA
RBH 25SRL	SHS 25LR	SH 25BN	SME 25LSA	QHH 25HA
RBH 30SR	SHS 30R	SH 30AN	SME 30SA	QHH 30CA
RBH 30SRL	SHS 30LR	SH 30BN	SME 30LSA	QHH 30HA
RBH 35SR	SHS 35R	SH 35AN	SME 35SA	QHH 35CA
RBH 35SRL	SHS 35LR	SH 35BN	SME 35LSA	QHH 35HA
RBH 45SR	SHS 45R	SH 45AN	SME 45SA	QHH 45CA
RBH 45SRL	SHS 45LR	SH 45BN	SME 45LSA	QHH 45HA
RBH 55SR RBH 55SRL	SHS 55R SHS 55LR	SH 55AN SH 55BN	-	-

2. RBS-S Series (Slim type)

RBX	тнк	NSK	PMI	HIWIN
RBS 15SC	SSR 15XV	SS 15CL	SME 15EB	QEH 15SA
RBS 15SR	SSR 15XW	SS 15AL	SME 15LEB	QEH 15CA
RBS 20SC	SSR 20XV	SS 20CL	SME 20EB	QEH 20SA
RBS 20SR	SSR 20XW	SS 20AL	SME 20LEB	QEH 20CA
RBS 25SC	SSR 25XV	SS 25CL	SME 25EB	QEH 25SA
RBS 25SR	SSR 25XW	SS 25AL	SME 25LEB	QEH 25CA
RBS 15SCF	-	SS 15JM	SME 15SB	QEW 15SA
RBS 15SF	SSR 15XTB	SS 15EM	SME 15LSB	QEW 15CA
RBS 20SCF	-	SS 20JM	SME 20SB	QEW 20SA
RBS 20SF	SSR 20XTB	SS 20EM	SME 20LSB	QEW 20CA
RBS 25SCF	-	SS 25JM	SME 25SB	QEW 25SA
RBS 25SF	SSR 25XTB	SS 25EM	SME 25LSB	QEW 25CA

3. RBHS-S Series (Slim type)

RBX	тнк
RBHS 25SR	SHS 25V
RBHS 25SRL	SHS 25LV
RBHS 30SR	SHS 30V
RBHS 30SRL	SHS 30LV
RBHS 35SR	SHS 35V
RBHS 35SRL	SHS 35LV

